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Abstract — Stereo cameras are a viable solution for 
reconstructing 3D scenes and are well suited for advanced 
driver assistance systems, autonomous driving and 
robotics applications. Modern stereo reconstruction 
algorithms offer good results, but require very much 
memory and their real time capabilities are limited on 
modern day processors. On the other hand, local window 
aggregation algorithms have a small memory footprint, 
they are very fast and can be ported to embedded devices, 
although they provide a lower number of 3D reconstructed 
points and are more error prone in the case of occluded 
and slanted surfaces. In this paper we propose a novel, 
local block matching method which has increased quality 
and is suitable for real time processing with hardware 
acceleration (satisfying running time). Our first 
contribution consists in the introduction of two new binary 
descriptors used for block matching. The second 
contribution lies in the shifting method implemented for 
the matching windows, in order to capture surfaces which 
are slanted, together with the fusion of the results obtained 
for fronto-parallel surfaces. Here we propose and compare 
two fusion methods: a naive and a gradient based 
approach. The final contribution consists in a smoothness 
constraint applied to neighboring pixels. The results have 
been tested on images from the Middlebury benchmark 
and also on real traffic scene. 
 

Keywords – local stereo correspondance; dense stereo 
reconstruction; block matching; slanted  and fronto-parallel 
surfaces; disparity at sub-pixel level; binary descriptors; 
smoothness costraint  

I.  INTRODUCTION  
Many advanced driver assistance systems or robotics 

applications depend on the perception of the environment and 
on the surrounding objects. Using stereoscopic depth for 
obstacle detection and road surface estimation remains a 
popular choice, mainly because of the reduced costs of the 
imagining devices and their acceptable performance compared 
with laser scanner technology. Retrieving accurate distance 
information from a pair of cameras for every pixel has been an 
intensive research area. The solutions available are split into 

three main categories: local methods, semi-global methods 
and global methods.  

Some of the best results can be obtained with global 
methods however they are not suitable for real time 
applications. Global methods work by imposing some 
constraints in the disparity selection phase. These constraints 
will be modeled into an energy function on the whole image 
that must be minimized. Semi-global methods were introduced 
to obtain good performance and reconstruction accuracy in 
real time. Like in global methods, this is also achieved by the 
minimization of an energy function. One of the issues with 
semi-global methods is that they require more memory, and in 
order to achieve real time performance they need an improved 
hardware solution based on a graphics processing unit (GPU) 
with the tradeoff of increased power consumption. Local 
algorithms use a finite support region around each interest 
point. The methods are based on a matching metric and 
usually apply some matching aggregation for smoothing. The 
minimum disparity for each pixel is searched. Some common 
matching metrics used by these algorithms are SAD, SSD, RT, 
Census, and ZNCC [1]. Local methods are a great solution for 
systems that would require low memory and low power 
consumption. Because our focus is real time performance this 
paper deals with improving local algorithms for stereo 
reconstruction.  

In all block matching techniques pixels within a rectangular 
patch from the left and right images are compared. However, 
these algorithms assume that the disparities within a certain 
block are constant and consequently the objects in the scene 
are perpendicular to the cameras optical axis. This assumption 
does not hold in the case of ground robots or vehicles, since 
the road surface and objects on the road are not fronto-parallel. 
We propose a solution to this problem by shifting parts from 
the matching windows, based on binary masks. Furthermore, a 
smoothness constraint is added to favor smooth transitions 
between neighboring pixels.  

The rest of the paper is structured as follows: the next 
section presents the relevant related works, in the field of 
stereo vision, that have tried to improve the problem of stereo 
matching, especially in local correspondence algorithms. In 
the third section we present our contributions, highlighting the 
stages of our new stereo pipeline. In the fourth section 
experimental results are illustrated. The presented algorithm is 
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Figure 1. Pipeline of the matching algorithm 

compared with classical local stereo algorithms, following an 
evaluation pattern similar to the one on the Middlebury data-
set [2], [3]. The last section highlights the conclusions of the 
paper and presents future improvements for our algorithm.  

II. RELATED WORK 
A real time solution that deals with local stereo 

correspondence is presented in [4]. This solution, called the 
DeepSea processor, is implemented in FPGA and ASIC and 
uses a local correspondence correlation combined with Census 
transform in order to obtain increased accuracy and high data 
rate.  

In 2008 [5], Hirschmüller introduced semi-global matching 
(SGM) with mutual information. This semi-global solution is 
one of the most renowned stereo correspondence algorithms in 
literature.  The algorithm treats the problem of slanted 
surfaces by the penalty P1 and depth discontinuities by a 
bigger penalty P2. The structure of the algorithm is well suited 
to be processed by highly parallel hardware architectures like 
FPGAs or GPUs.  

Center symmetric LBP is another local block matching 
technique which provides a more compact representation, by 
comparing only the center symmetric pairs of pixels. In 
addition, an intensity threshold (T) is introduced. The authors 
in [6] have proven that the best results for this threshold are 
obtained in the [0, 0.02] interval. The equation for the CS-LBP 
is highlighted below: 
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A variety of articles are dedicated towards the correct 
reconstruction of slanted surfaces. An interesting approach is 
highlighted in the work of Ranft et. al [7]. In this paper the 
effect of slanted surfaces is corrected by fusing the matching 
information from multiple scaling and shearing of the images. 
The results of the algorithm have been implemented on GPU 
in order to achieve real time performance. Other approaches 
that try to solve the problem of slanted surfaces are presented 
in several articles of Nils Einecke [8], [9] and [10]. The work 
presented in [10] has a similar approach as Ranft [7]. In this 
method the original disparity map computed by a local stereo 
method is iteratively improved through a process of depth 
interpolation and image warping based on the interpolated 
depth. The presented structure, which is based on image 

warping, gives a mechanism for testing the validity of the 
interpolated depths, allowing for incorrect depth estimations to 
be discarded.  

In [8] the authors solve the problem of slanted surfaces by 
rotating the aggregation window. In case the best matching 
block is not fronto-parallel a penalty is introduced to the 
matching cost block. The best matching cost is computed by 
rotating the aggregation window on several disparities (±1, 
±2). If the best cost comes from a disparity different from the 
standard rectangular patch that cost is being penalized. 
Different penalties are proposed, depending on whether the 
best match is obtained from one or two disparities away. The 
idea of penalizing costs from different disparities comes from 
SGM. 

In [9] the problem of slanted planes is solved by an image 
warping taking into consideration the camera parameters.   

Other methods try to deal with depth discontinuities by 
means of adaptive support weight [11] which use weighted 
aggregation based on spatial similarity and appearance of the 
pixels within a patch.  

III. PROPOSED METHOD 
As mentioned in section I, one of the main issues why the 

dense disparity maps are deteriorated when using standard 
window matching techniques is that of non-frontal surfaces. 
The block matching on these surfaces fails because the 
distance to the camera is not constant within a matching 
window.  

In our approach we crop parts of the matching window, 
shift them left and right with (±1, ±2) disparity positions in 
order to find its best matching position. The best matching 
solutions are fused into a correlation cost along with penalties 
for each shifting. We finally perfect the resulted disparity map 
by imposing a smoothness constraint among its neighboring 
pixels. Even though we will be able to compute disparities 
correctly for slanted surfaces, some fronto-parallel surfaces 
will be reconstructed incorrectly. For this reason we are also 
computing the stereo correspondence with the standard block 
matching method in parallel and fusing the two algorithms to 
obtain a better disparity map. In the following three 
subsections, of this section, we will detail the main 
contributions of this paper. 

We will test the performance of our algorithm against the 
algorithms presented in [4], [6]. 
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In our implementation we will use a descriptor which has 
similar structure to the one presented in [7]. Our descriptor 
also makes comparisons with pixels near the center, not just 
the ones at a distance of 4px. In our approach we also devised 
a method of shifting blocks from a patch, such that the final 
cost does not come from only standard block matching. The 
shifting of the matching windows is not uniform meaning we 
could shift two thirds of the window in one direction and the 
other third could be shifted in the total opposite direction. 
Furthermore we shift the blocks from our aggregation window 
using a set of disproportional binary masks. 

The resulting cost is penalized depending on whether it 
comes from two disparities or just from one disparity away. 
The shifting process will be presented further in the paper. 
Another key difference between our algorithm and the 
algorithm presented in [8] is that we are also incorporating a 
penalty in our cost volume, similar to SGM, for each shifting. 

The general architecture of the stereo correspondence 
algorithm pipeline is presented in Figure 1.  

After the rectification process we apply our descriptor to 
the rectified images. We then apply our shifting process to 
each image. In the same time we are also calculating the cost 
volume by using the standard patch matching. The classical 
block matching is applied in order to repair the disparities 
which got an erroneous value in the shifted window block 
matching approach. 

A local cost aggregation with a 7x7 window is needed 
since single cost matches can be erroneous. Winner takes all 
methodology is applied and the resulted disparity map is 
corrected by a smoothness constraint and an interpolation at 
sub pixel level. We will elaborate on each of the original 
contributions of this paper further in this section. 
 

A. Block Matching Descriptors 
The matching score computation is an important part of 

our algorithm. The correct choice of the matching score will 
affect the selection of the best disparity and so, the pixel and 
sub-pixel data will also be influenced. One of the most 
challenging tasks is to limit erroneous matching scores caused 
by lack of texture, reflective surfaces and repetitive patterns. 
For the matching metric we propose two binary descriptors. 
The binary descriptors have been chosen because of their 
properties of being invariant to additive and multiplicative 
offsets in intensity [4]. Although global algorithms deal with 
this issue, we have to extract more powerful features which 
differentiate certain regions.  
Single pixel matching can give many errors and therefore 
instead comparing just one pixel a neighborhood around the 
pixel is chosen. A binary descriptor that reveals the 
comparison of each pixel in the matching block with the 
center pixel of the matching window is formed. For a 5x5 

window our descriptor would contain 24 bits. Such small 
matching windows are often not sufficient to capture enough 
information regarding the compared pixel position on the 
epipolar line, its neighborhood and its variation from 
neighboring pixels. In order to solve this issue larger matching 
windows can be used. However increasing the matching 
windows size means more comparisons and more memory for 
storing each comparison. The running time increase is another 
consequence of the aforementioned statements. This issue is 
solved by choosing only specific pixels from the matching 
block and keeping the small memory structures similar to the 
ones used for 5x5 matching window. Of course some 
information from the matching is lost when we choose only 
specific pixels for comparison. In order keep the small 
footprint and also store information from the matching 
window, we use not only the comparisons with the center 
pixels but also the comparison with the mean of the window 
storing for each comparison 2 bits. Two bits are an optimal 
solution for each pixel comparison.  In our pattern we have 
chosen 16 pixels for comparison, for each storing 2 bits: one 
being the comparison of each pixel with the center and the 
other is the comparison with the mean of the matching 
window. The second comparison we have done in order to 
capture some information regarding matching window.  

Our first binary descriptor (mean variation – MV) is 
performed on a 9 x 9 window in order to provide immunity to 
noise.  The image of the binary descriptor window is shown in 
Figure 2. 

 
Figure 2. Binary pattern used for stereo block matching, with black we 

mark the selected pixel 

For each evaluated pixel, 2 values are stored. The first value 
is the comparison of the respective pixel’s intensity with the 
center pixel, like in the census transform, the second bit is 
formed by comparing the same pixel intensity with the mean 
of the intensity over the entire 9 x 9 window. The result is a 32 
bit bit-string that can be easily compared with another bit 
string using the synergy between the XOR instructions with 
the SSE POPCNT instruction. The black squares represent the 
selected pixels, while the white ones are not considered for the 
pattern creation. 

An alternative binary descriptor proposed (modified census 
transform – MCT) uses the same 9 x 9 window structure 
presented in Figure 2. However, in this second pattern a 
reflection invariance, t, has been introduced. We are verifying 
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if each compared pixel is within a certain interval of intensity 
and for each comparison we store 2 bits depending on whether 
the pixel is inside the specified interval or outside. We formed 
this pattern taking into consideration an idea from [7].  
Equation (2) reveals how the second pattern is formed. 

The best solution has been found for a value of t = 1. To 
form this pattern, s will be at first equal to the value 2 and then 
4; and i, j will be at first equal to 1 and then -1. 

B. Stereo Block Matching and fusion 
 After computing the descriptor on the input images, we 
must perform the cost matching step. For this we will use a set 
of precomputed binary masks and extract from adjacent 
positions the exact part of the window which we want to match 
against a portion of the reference window. Considering our 32 
bit bit-string obtained after the matching process, we split it 
into five distinct regions. This splitting is depicted in figure 3. 
The blue squares correspond to regions where we have a bit of 
1 and the white regions to bits of 0.  

Figure 3. Bit string masks and original bit string value 

 When the final matching cost is formed, from „parts” of 
adjacent strings, we will also include a penalty for each 
component. For example: if our final matching block is formed 
from two regions coming from disparity +1 we will include a 
penalty P1 to each of the regions to the final cost of the 
matching window. If we would have a matching block coming 
from disparity +2 and one from disparity -1, we would include 
for the first a penalty P2 and for the second a penalty P1. The 
choice of selecting the best section is similar to a window shift 
for each region of the matching window. All the resulted costs 
are fused together to form the final patch cost. The method is 
performed for d disparities for the left and right images. The 
idea of introducing a penalty when calculating the cost of a 
matching came from [5] and  [8]. To obtain the best results P2 
penalty should be greater than P1. In our case it is considered 
to be the square of the P1 penalty, another viable selection 
could be the double P1. Comparison of pixels from a block, 
from left and right image is performed using hamming 
distance.  Since the matching values are limited for each pixel a 
7 x 7 aggregation of the cost volume is performed. By 
performing an aggregation over a small window we achieve 
better smoothness and a larger spread of the matching cost. The 
algorithm is called shifted windows – SW and is depicted in 
Figure 4.  

Figure 4. The process of window shifting for a block Dj in the left image and 
its corresponding blocks in the right image 

Window shifting solves the problem of slated surfaces, 
however fronto-parallel surfaces may receive a wrong 
disparity value. Therefore, the authors propose a further 
improvement of the stereo algorithm by fusing the classical 
local stereo algorithm, using the same descriptor, to the 
previously resulted disparity map.  
 An alternative way of fusion has been studied. The second 
fusion method implemented was using the gradient image to 
identify when the matching block should be shifted i.e. finding 
slanted surfaces, and not shifting the windows for each 
disparity. A set of 36 orientations have been selected and 
broken in two classes, for slanted and for frontal surfaces. 
Before performing block matching we first decide whether the 
block has to be slanted or not. Even though the resulted 
disparity map has less reconstructed points than the naive 
version of fusion presented above, the number of points 
reconstructed incorrectly seems to be much larger when 
compared with the ground truth. In Figure 5 we can see the 
results of the naive and gradient way of fusing on a stereo 
image pair from the Kitty data-set [12]. 
 More concrete results will be presented in the experimental 
results section. 

C. Smoothness constraint 
In this section we suggest a possible improvement for local 

stereo reconstruction algorithms. The idea for this 
improvement was first presented for semi-global matching in 
[13]. After generating a disparity map, we want to correct 
transitions between neighboring pixels so that they are as 
smooth as possible. We apply this smoothness constraint only 
where the difference between neighboring pixels are smaller 
than a threshold T. This would have as an effect the smoothing 
of the surfaces that are belonging to a specific item. In our 
experiments we have used the value of T = 2.  

a. Original scene  

 
b. Disparity map with naive fusion 

 
c. Disparity map with gradient fusion 

 
Figure 5.Comparison between the naive fusion type and the gradient 

fusion type. 
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Considering three consecutive pixels�����, ���and ���� 
along a row of the generated disparity image, see Figure 6, 
with disparities ����	 ��	 ���� which satisfy the following 
condition: 

� 1i id d T� � � �� (3)�
the three points define a triangle in the 3D space, with 
disparities being the third coordinate. The angle � can be 
computed using equation (4). 
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The operations denoted by 
�
� is the Euclidian distance. The 
maximum angle can be of � (which corresponds to a very 
smooth transition).  

We will compute the smoothness function f, as: 

� f �
�

� �� (6)�

  We search for that angle �, which is formed with disparities 
situated at one pixel difference from the values of the 
neighbors’ disparities and maximizes the given function (6). 
The goal of the function is to favor smooth pixel transitions.  

Sub-pixel interpolation refines the disparity image at sub-
pixel level so that accurate distance information can be 
provided. Usually, parabola interpolation is used, however as 
highlighted in [1] this method lacks the necessary accuracy for 
automotive systems, due to the pixel locking effect. The sub-
pixel function used is symmetric V and its expression is 
highlighted in equation (7). 
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where M1, M2, M3 are the correlation values belonging to the 
current winning disparity and its neighbors. By implementing 

the sub-pixel interpolation function we are able to estimate 
more precisely the depth to the objects in the scene. 

IV. EXPERIMENTAL RESLTS 
In this section we are going to evaluate the presented 

algorithm having as reference other local block matching 
stereo methods. The system on which we tested our method 
contains an Intel i5 processor at a 3.3 GHZ frequency. The 
algorithms presented have been implemented in C++ using 
Open MP for parallelization, no hardware acceleration 
methods have currently been used with in the current 
implementation, apart from one SSE instruction, POPCNT.  

To be noted that the current result adopts no post-filtering, 
pre-filtering and disparity refinement methods, making the 
method more error prone. However the algorithm is compared 
against other local block matching stereo in which no such 
refinement methods are implemented.  

Our input data comes from the Middlebury data-set [2], [3] 
considering a 2px error. When using this data-set the method 
is evaluated with respect to two criteria: running time and 
result quality, using a metric similar with the one from 
Middlebury.  

Sample images from the Middlebury data-set are presented 
in the figure bellow. We have displayed only the Tsukuba and 
Teddy images for each algorithm in order to conserve space. 
Left column presents the original images and the right column 
presents the ground truth for the Tsukuba and Teddy images 
respectively. 
 

Figure 7. Tsukuba and Teddy reference images and their corresponding 
ground truth from the Middlebury data-set 

 
The compared Block Matching methods are: Census [4], CS-
Census [6], Modified Census Transform (MCT), Mean 
Variation (MV), Shifted Windows Mean Variation (SWMV), 
Shifted Windows Modified Census Transform (SWMCT) and 
Gradient fusion applied for Mean Variation. Figure 8 presents 
the obtained disparity images for all the above mentioned 
algorithms on the stereo pairs from the Middlebury data-set 
presented in Figure 7. All the comparisons were done on the 
Middlebury benchmark and the results of the evaluation on 
this benchmark are provided in table I. The lower scores 
overall are due to the lack of post refinement. However in this 

Figure 6. Smoothness angle computation 
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paper we are only interested in the block matching techniques 
and we want to see how our method deals with surfaces that 
are not fronto-parallel.  

TABLE I.  EVALUATION ON MIDDLEBURY DATA-SET 

Method 
Results on several images 

Tsukuba  Venus  Teddy  Cones  Average 
bad pixels 

Census 14.0 79.2 21.7 19.4 38.2 

CS-CENSUS 25.2 6.59 21.1 19.2 26.1 

MCT 11.2 6.59 21.1 19.2 23.0 

MV 12.9 6.53 21.0 19.3 23.3 

SWMV 8.47 3.99 14.7 12.1 19.3 

SWMCT 11.1 5.38 14.7 12.2 20.2 
Gradient 
Fusion 28.8 31.8 25.2 22.4 35.9 

 
We have presented only the results from the “all” column, 

because otherwise the table would have been too large. The 
significance of the all method is: All (including half-occluded) 
regions (white) and border regions (black).  This part 
highlights the errors in a region of interest, the black borders 
of the image are not taken into account.  

We can see that our method using mean variation (MV) 
block matching, clearly surpasses other methods with respect 
to the quality of the results. We can also observe that the 
gradient fusion offers very poor results compared with 
classical block matching even though at a first glance the 
results seem better. 

MCT and MV refer to the modified binary descriptor and 
mean variation binary descriptors which are the proposed 
patterns applied without the window shifting method. We can 
see that by applying the window shifting we obtain an increase 
of 4% in case of the MV (SWMV) and 2.8% in case of the 
MCT (SWMCT). We also see that the proposed patterns 
outperform the CS-Census and Census descriptors.  To be 
noted that in case of the MCT pattern 5 threshold values have 
been tested (t = 0, 1, 2, 3, 4). We have observed that after the 
value of 1 the disparity maps begin to degrade. We have also 
tested the above mentioned threshold values for the case of the 
shifted windows. In this case, we also conclude that the best 
threshold value for the t parameter is 1. Alternative results 

obtained for other local matching metrics like ZNCC, RANK 
etc. are presented in [14].  

In Figure 9 we can see a comparison of the results provided 

by our SWMV algorithm against the TYZX reconstruction. 
The images were obtained with a stereo system in driving 
scenarios. 

Figure 9. Our Result compared to the Tyzx version 

In the Table II we can see the running times of the 
algorithms implemented on the system that was specified 
earlier. All the specified methods have been implemented and 
run on the test computer for a number of 20 times and the 
average time value has been extracted. The maximum 
disparity considered is 64 and the matching block size is of 9 x 
9. The size of the tested images is 512 x 383 pixels. 

TABLE II.  RUNNING TIME OF THE BLOCK MATCHING ALGORITHMS 

Method 
Results on several images 

Average time in milliseconds (ms) 
Census 55.6 
CS-CENSUS 35.5 
MCT 50.5 
MV 58.8 
Our Method (SWMV) 288,3 
Our Method (SWMCT)  258.6 
Gradient Fusion 297.3 

TABLE III.  CHOOSING THE CORRECT PENALTY FOR OUR ALGORITHM 

Penalty 
Results of several penalties applied to the SWMV algorithm 

Tsukuba Venus Teddy  Cones  Average 
bad pixels 

0.65 9.42 4.23 14.8 12.7 19.9 
0.68 9.27 4.15 14.7 12.6 19.8 
0.75 8.89 3.99 14.7 12.6 19.5 
0.95 8.47 3.99 14.8 12.1 19.3 

   

   
Census CS-Census MCT MV SWMV SWMCT Gradient Fusion 

Figure 8. Obtained Disparity Maps with the compared algorithms for the Tsukuba and Teddy images from the Middlebury data-set 
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Although the CS-Census method is the fastest one, due to 
its low number of comparisons, our method with SWMV 
produces the best results from the reconstruction quality point 
of view. It is clear that further optimizations have to be 
applied in order to lower the processing time, but this should 
not pose a problem due to the highly parallel structure of our 
reconstruction algorithm.  

Several experiments have been done in order to select the 
best penalties for the algorithm. In table III we present several 
penalties and results for the Shifted Windows with Mean 
Variation (SWMV) binary descriptor. We have tested all 
penalties starting from 0 until 1 having a step of 0.01.  We 
have found that the results are similar for the MCT descriptor. 

The average error will start to grow after 0.95, therefore the 
value chosen for our penalty is 0.95. To be noted that the 
authors in [8] have also found that their best results were 
obtained for a penalty of 0.95. 

All the implemented local stereo block matching methods 
use a single 3D matrix for computing the cost volume, unlike 
the semi-global or global approaches that require much more 
memory. For this reason these type of algorithms are more 
appropriate for embeded systems.  

V. CONCLUSIONS AND FURTHER WORK 
In this paper we have presented a variant for a Block 

Matching stereo algorithm which uses limited resources for 
computing good quality disparity maps. The main focus was 
to capture both types of surfaces (fronto-parallel and slanted) 
and offer a smooth transition among neighboring disparities. 
For this purpose we have proposed two types of binary 
descriptors, which in essence have the same structure and we 
have implemented a state of the art method of shifting each 
row of the descriptors, such that the effects caused by slanted 
surfaces are mitigated or removed. The algorithm was fused 
with the classical Block Matching algorithm, using the same 
descriptor, in order to capture frontal surfaces that could 
otherwise obtain a bad disparity. The obtained disparity map is 
smoothed using our smoothness constraint and a symmetric V 
interpolation is applied, in order to obtain a sub-pixel accuracy 
of the disparity map. The main focus was on the stereo 
matching algorithm and no effort was, yet, given to the post 
processing of the disparity map. This is why experiments and 
comparisons with other BM algorithms that do not benefit 
from post refinement were carried out on the Middlebury 
benchmark.  

More experiments have been done in order to prove the 
methods advantage over classical BM. Several penalties were 
tested and, as a byproduct, the penalty which is best suited for 
both binary descriptors was found.  

In future work, we will first focus on improving the 
running time of our stereo reconstruction method by using 
paralelization and hardware acceleration mechanisms (GPU 
implementation or SSE intrinsics) and then analyze, design 
and implement the refinements and post processing steps of 

the obtained disparity maps, which are equally important for 
improving the accuracy of stereo reconstruction algorithm. 
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