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Abstract—Stereo correspondence methods rely on matching costs for computing the similarity of image locations. We evaluate the

insensitivity of different costs for passive binocular stereo methods with respect to radiometric variations of the input images. We

consider both pixel-based and window-based variants like the absolute difference, the sampling-insensitive absolute difference, and

normalized cross correlation, as well as their zero-mean versions. We also consider filters like LoG, mean, and bilateral background

subtraction (BilSub) and nonparametric measures like Rank, SoftRank, Census, and Ordinal. Finally, hierarchical mutual information

(HMI) is considered as pixelwise cost. Using stereo data sets with ground-truth disparities taken under controlled changes of exposure

and lighting, we evaluate the costs with a local, a semiglobal, and a global stereo method. We measure the performance of all costs in

the presence of simulated and real radiometric differences, including exposure differences, vignetting, varying lighting, and noise.

Overall, the ranking of methods across all data sets and experiments appears to be consistent. Among the best costs are BilSub, which

performs consistently very well for low radiometric differences; HMI, which is slightly better as pixelwise matching cost in some cases

and for strong image noise; and Census, which showed the best and most robust overall performance.

Index Terms—Stereo, matching cost, performance evaluation, radiometric differences.

Ç

1 INTRODUCTION

ALL passive stereo correspondence algorithms have a
way of measuring the similarity of image locations.

Typically, a matching cost is computed at each pixel for all
disparities under consideration. The simplest matching
costs assume constant intensities at matching image
locations, but more robust costs can compensate for certain
radiometric differences and noise.

Radiometric differences can be caused by the camera(s)
due to slightly different settings, vignetting, image noise,
etc. Radiometric precalibration can only compensate for
some of these differences, and is not possible in all
situations. Further differences may be due to non-Lamber-
tian surfaces, for which the amount of reflected light
depends on the viewing angle. While such differences can
be reduced by making the stereo baseline smaller, this also
reduces the geometric accuracy of the reconstruction. An
example of real-world stereo data exhibiting many of the
effects described above is given by Daimler AG’s sequences
taken by a calibrated stereo camera in a driving car [1].

Another source of radiometric differences is that the
strength or positions of the light sources may change when
images of a static scene are acquired at different times. For
larger scenes, image acquisition will take some time and it
may not be possible to control the light source (e.g.,

outdoors). Similar situations arise when matching aerial or
satellite images.

Due to all of the above reasons, it is safe to say that any
real-world stereo application requires radiometric robust-
ness. This includes existing commercial systems, which
employ different techniques, many of which are discussed
in this paper. For example, Point Grey’s Triclops stereo
library [2] uses a bandpass filter, Videre’s Small Vision
System [3] uses a Laplacian of Gaussian filter, and Tyzx’s
Deep Sea system uses the census transform. Similarly, state-
of-the-art multiview stereo methods [4], [5], [6] use methods
such as normalized cross correlation and mutual informa-
tion for handling severe radiometric differences.

2 RELATED WORK

Common pixel-based matching costs include absolute
differences, squared differences, sampling-insensitive abso-
lute differences [7], or truncated versions, both on gray and
color images. Common window-based matching costs
include the sum of absolute or squared differences (SAD/
SSD) and normalized cross correlation (NCC). In contrast to
SAD and SSD, NCC accounts for gain differences (a multi-
plicative change) in the matching windows due to normal-
ization. A constant offset (bias) of pixel values is often
compensated by the zero-mean versions ZSAD, ZSSD, and
ZNCC. Alternatively, an offset change can also be reduced by
filtering the images before matching using a mean filter,
computing a gradient magnitude image (i.e., first derivative)
[8], or Laplacian of Gaussian (i.e., smoothed second
derivative) [9], [10]. Unfortunately, all of these filters result
in a blurred disparity image. Ansar et al. [11] proposed
background subtraction using a bilateral filter [12] for
compensating radiometric differences without blurring.

Nonparametric matching costs were introduced for
being robust against outliers that occur in window-based
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methods near object boundaries [13], [14], [15]. However,
since nonparametric costs rely only on the relative ordering
of pixel values, they are also invariant under all radiometric
changes that preserve this order. The Rank and Census
methods [13] can be implemented as a filter followed by a
comparison using the absolute difference or Hamming
distance. Ordinal measures [14], [16] compute the distance
of rank permutations of corresponding windows.

Another category of methods tries to explicitly model the
complex radiometric relationships between images. Mutual
information (MI) has been introduced in computer vision by
Viola and Wells [17]. MI has been first used for stereo
matching by Chrastek and Jan [18], but with disappointing
results. Later work on MI in window-based stereo methods
[19], [20], [21] demonstrated its power to model complex
radiometric relationships. Others used approximations of
MI [22] for a segmentwise stereo matching. It has been found
[20], [21] that large windows are needed for collecting
enough data for the required joint probability distribution,
but large windows again result in blurring at object
boundaries. Therefore, Fookes et al. [20] proposed a
hierarchical method for estimating probability priors over
the whole image at a lower resolution. These priors are fused
with values collected from smaller matching windows,
which result in a reliable probability distribution. Kim
et al. [23] used MI pixel-based without matching windows in
the global graph cuts stereo method. The probability
distribution is iteratively calculated over the whole image
using a prior disparity, which is random at the beginning.
Finally, it has been shown [24] that a hierarchical calculation
of pixelwise MI is as accurate as an iterative calculation, and
just 15-20 percent slower than a direct calculation using
absolute differences.

Zhang et al. [25] compute simultaneously the disparity
image and an illumination ratio map in a BP framework for
handling complex local intensity variations. We attempted
to include the authors’ implementation of this method in
our comparison, but we were unable to find parameter
settings to yield competitive performance across our test
data sets.

In the multiview case, the same techniques (e.g., NCC
or MI) can be used for handling radiometric differences
[6]. However, multiple images can also be used for
explicitly modeling non-Lambertian scenes [26], [27], [28]
or reflections [29]. Furthermore, special imaging setups,
like multiple images with one light source that moves
away [30], or “Helmholtz stereo,” where camera and light
source are interchanged [31], can be used for handling
non-Lambertian scenes successfully. In this paper, how-
ever, we focus only on passive methods that work on a
single stereo pair with unknown radiometric distortions
and unknown light sources.

Recent stereo surveys [32], [33] and the Middlebury
online evaluation [34] compare state-of-the-art stereo
methods on test data with complex geometries and varied
texture. Other evaluations focus on certain aspects like
aggregation methods for real-time matching [35]. However,
the insensitivity of matching costs is in these papers not
evaluated since the stereo test sets are typically pairs of
radiometrically very similar images.

Gautama et al. [36] compare ZNCC and Census for car-
seat occupancy detection using window-based real-time
stereo vision. The performance in the presence of radio-
metric differences was not explicitly tested. For their
application, Census performed faster and more accurately
than ZNCC. Banks and Corke [37] compared SAD, SSD,
NCC, their zero-mean variants, Rank, and Census for
window-based stereo matching. The evaluation includes
visual inspection and the count of pixels that passed the left/
right consistency check on images with real radiometric
differences and synthetic images without differences. Rank
and Census performed better than the classical matching
costs. Fookes et al. [38] compared SAD, ZSAD, NCC, ZNCC,
Rank, and MI for window-based stereo matching. Their
evaluation also measures the number of pixels that pass the
validity check. They concluded that ZNCC and Rank
perform best on images without radiometric changes, while
the performance of MI is best on images with artificially
changed radiometry. Sarkar and Bansal [21] compared MI
and SSD for window-based matching on images with
ground-truth and artificial radiometric changes. They found
that MI handles radiometric differences well, but its
performance depends heavily on the window size.

The scope of this paper is the evaluation and comparison
of parametric and nonparametric matching costs as well as
MI on images with several common radiometric differences.
In contrast to previous studies [21], [36], [37], [38], we test
all costs not only for window-based matching, but (where
applicable) also for pixel-based matching with a semiglobal
method (SGM) and graph cuts (GC) as a strong global
method. Furthermore, in addition to simulated global and
local radiometric changes, we perform experiments on
stereo pairs with real radiometric differences. All tests on
simulated variations and real changes are evaluated against
ground-truth disparities.

The focus of this paper is on matching costs that
explicitly or implicitly handle radiometric differences. This
excludes popular methods like the correlation-based
weighting according to proximity and color similarity
[39], since this is an aggregation approach rather than a
new matching cost. As mentioned earlier, we also exclude
methods that require more than two views or calibrated
light sources and restrict our evaluation to passive
methods that work on a single stereo pair with unknown
radiometric distortions.

3 MATCHING COSTS

It is important to distinguish between matching costs and
methods that use these costs. In this paper, we compare all
possible combinations of 15 costs and three stereo methods.
The costs are grouped into parametric costs, nonparametric
costs, and mutual information. All parametric costs use the
magnitude of pixel values and can be subdivided in
methods that require identity, allow different offsets or
scalings or both. Nonparametric costs use only the local
ordering of intensities and can therefore handle all mono-
tonic mappings. Mutual information can model even more
complex relationships between images.

We initially define all matching costs on intensity
(luminance) instead of color, which we store as 8-bit
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unsigned integers. See Fig. 1a for an example. Note that all
costs can simply be extended to color by computing the
costs for each color channel separately, and then summing
the costs over all channels; for some costs or filters, there are
more natural definitions, which we describe below. In our
experiments below, we focus mainly on the intensity
versions of the costs, but we investigate the potential of
color matching in Section 5.6.

3.1 Parametric Matching Costs

Our first parametric cost function is the commonly used
absolute difference (AD), which assumes brightness constancy
(i.e., identity) for corresponding pixels and which serves as
a baseline performance measure of our evaluation. In global
methods, the differences are used pixelwise. Local stereo
methods use the sum of the absolute differences (SAD) over all
pixels q of a certain neighborhood Np, typically a square
window. We use the notation d ¼ ½d 0�T for the disparity.
We assume rectified stereo pairs throughout. Thus, for a
pixel p in the left image, the corresponding pixel in the right
image is p� d:

CADðp;dÞ ¼ jILðpÞ � IRðp� dÞj; ð1Þ

CSADðp;dÞ ¼
X
q2Np

jILðqÞ � IRðq� dÞj: ð2Þ

Additionally, we also test the sampling-insensitive
absolute difference of Birchfield and Tomasi (BT) [7]. It
computes the absolute distance between the extrema of
linear interpolations of the corresponding pixels of interest
with their neighbors. This method is often used for
pixelwise global methods, but can also be used for
window-based matching. (Other window-based sampling-
insensitive costs exist [40] but are not evaluated here.)

CBT ðp;dÞ ¼ minðA;BÞ;
A ¼ maxð0; ILðpÞ�ImaxR ðp� dÞ; IminR ðp� dÞ�ILðpÞÞ;
B ¼ maxð0; IRðp� dÞ�ImaxL ðpÞ; IminL ðpÞ�IRðp� dÞÞ;

IminðpÞ ¼ minðI�ðpÞ; IðpÞ; IþðpÞÞ
ImaxðpÞ ¼ maxðI�ðpÞ; IðpÞ; IþðpÞÞ
I�ðpÞ ¼ ðIðp� ½1 0�T Þ þ IðpÞÞ=2;
IþðpÞ ¼ ðIðpþ ½1 0�T Þ þ IðpÞÞ=2:

ð3Þ

Our next three cost functions are actually filters that
change the input images separately before matching via
absolute difference. The mean filter simply subtracts from
each pixel the mean intensities within a neighborhood of

15� 15 pixels centered at the pixel of interest. A constant

offset of 128 is added to avoid negative numbers when

storing the result back into an 8-bit image (Fig. 1b). Thus,

the mean filter performs background subtraction for

removing a local intensity offset:

ImeanðpÞ ¼ IðpÞ �
1

jNpj
X
q2Np

IðqÞ þ 128: ð4Þ

The Laplacian of Gaussian (LoG) is a bandpass filter,

which performs smoothing for removing noise and removes

an offset in intensities. The filter is often used in local real-

time methods [9], [10]. Here, we use a LoG filter with a

standard deviation of � ¼ 1 pixel, which is applied by

convolution with a 5� 5 LoG kernel (Fig. 1c):

ILoG ¼ I �KLoG; KLoGðx; yÞ ¼ �
1

��4
1� x

2 þ y2

2�2

� �
e�

x2þy2
2�2 :

ð5Þ

Furthermore, we consider background subtraction by

bilateral filtering (BilSub) [11]. The bilateral filter [12] sums

neighboring values weighted according to proximity and

color similarity. It smoothes without blurring high-contrast

texture. Background subtraction is implemented by sub-

tracting from each value the corresponding value of the

bilateral filtered image. This effectively removes a local

offset without blurring high-contrast texture differences

that may correspond to depth discontinuities. We use a

kernel of 15� 15 pixels, a spatial distance (which defines

the amount of smoothing) of �s ¼ 3, and a radiometric

distance (which prevents smoothing over high-contrast

texture differences) of �r ¼ 20. On intensity images, the

radiometric distance is computed as the absolute difference

of intensities as defined in (6). Fig. 1d shows the result. On

color images, we use the distance in CIELab space, as

originally suggested [12].

IBilSubðpÞ ¼ IðpÞ �
P

q2Np
IðqÞeserP

q2Np
eser

; s ¼ �ðq� pÞ2

2�2
s

;

r ¼ �ðIðqÞ � IðpÞÞ
2

2�2
r

:

ð6Þ

For window-based stereo methods, there are further

common costs for removing an offset in intensities. The zero-

mean sum of absolute differences (ZSAD) subtracts the mean

intensity of the window from each intensity inside the

window before computing the sum of absolute differences.

Note that the subtracted mean is the same for each pixel in
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Fig. 1. Different filters on a part of the Teddy image. The contrast of (b)-(d) has been increased for better visualization. (a) Intensity image. (b) Mean

filter. (c) LOG filter. (d) BilSub filter. (e) Rank filter. (f) SoftRank filter.



the correlation window, in contrast to the mean filter where
each pixel has its own window for computing the mean.

CZSADðp;dÞ ¼
X
q2Np

jILðqÞ � �ILðpÞ � IRðq� dÞ þ �IRðp� dÞj

�IðpÞ ¼ 1

jNpj
X
q2Np

IðqÞ:

ð7Þ

NCC is another window-based matching technique that
is commonly used. NCC compensates for gain changes and
is statistically the optimal method for dealing with Gaussian
noise. However, NCC tends to blur depth discontinuities
more than many other matching costs because outliers lead
to high errors within the NCC calculation [10].

CNCCðp;dÞ ¼
P

q2Np
ILðqÞIRðq� dÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

q2Np
ILðqÞ2

P
q2Np

IRðq� dÞ2
q : ð8Þ

MNCC, due to Moravec [41], is a commonly used variant
of NCC. It is an approximation of NCC and can be
computed faster. We selected the standard NCC as MNCC
gave slightly inferior results in our experiments. In addition
to NCC, we separately consider the zero-mean variant
ZNCC in our evaluation. ZNCC is the only parametric cost
that can compensate for differences in both gain and offset
within the correlation window:

CZNCCðp;dÞ

¼
P

q2Np
ðILðqÞ � �ILðpÞÞðIRðq� dÞ � �IRðp� dÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

q2Np
ðILðqÞ � �ILðpÞÞ2

P
q2Np
ðIRðq� dÞ � �IRðp� dÞÞ2

q :

ð9Þ

3.2 Nonparametric Matching Costs

Nonparametric matching costs are based on the local order
of intensities. Some of these costs can be again implemented
as filters that change the input images individually. The
Rank filter replaces the intensity of a pixel with its rank
among all pixels within a certain neighborhood. It was
originally proposed [13] to increase the robustness of
window-based methods to outliers within the neighbor-
hood, which typically occur near depth discontinuities and
leads to blurred object borders. Since all nonparametric
costs depend only on the ordering of intensities and not the
magnitude of intensities, they tolerate all radiometric
distortions that preserve this ordering. Here, we use a
Rank filter with a square window of 15� 15 pixels centered
at the pixel of interest.

IRankðpÞ ¼
X
q2Np

T ½IðqÞ < IðpÞ�: ð10Þ

The function T ½� is defined to return 1 if its argument is true
and 0 otherwise. The transformed images are matched with
the absolute difference. The Rank filter is known to be
susceptible to noise in textureless areas, as can be seen in
the area to the right of the teddy in Fig. 1e. The Soft Rank
filter was proposed by Zitnick [42] to reduce this problem
by defining a linear, soft transition zone between 0 and 1 for
values that are close together:

ISoftRankðpÞ ¼
X
q2Np

min 1;max 0;
IðpÞ � IðqÞ

2t
þ 1

2

� �� �
:

ð11Þ

We used the threshold t ¼ 8. The result in Fig. 1f is clearly
less noisy in textureless areas.

We also consider the Census filter [13]. It defines a bit
string where each bit corresponds to a certain pixel in the
local neighborhood around a pixel of interest. A bit is set if
the corresponding pixel has a lower intensity than the pixel
of interest. Thus, Census not only stores the intensity
ordering like Rank, but also the spatial structure of the local
neighborhood. We use a window of 9� 7 pixels and store
the bit string in a 64-bit integer. The transformed images are
matched by computing the Hamming distance between
corresponding bit strings. The performance of Census is
reported [13] to be superior to Rank, but the computation on
standard CPUs is more time-consuming due to the
calculation of the Hamming distance.

The final nonparametric cost we consider is the ordinal
measure proposed by Bhat et al. [43], which is based on the
distance of rank permutations of corresponding matching
windows. It cannot be implemented as a filter and requires
window-based matching. Its potential advantage over Rank
and Census filters is that it avoids the dependency on the
value of the pixel of interest.

3.3 Mutual Information

Our last matching cost is based on MI. MI enables
registering of images with complex radiometric relation-
ships [17]. The MI of two images is calculated by summing
the entropy of the probability distributions (HI1

and HI2
) of

the overlapping parts of each image and subtracting the
entropy of the joint probability distribution (HI1;I2

) of
pixelwise correspondences of both images. The probability
distributions are derived from the histograms of the
corresponding image parts. The MI value directly expresses
how well images are registered. This follows from the
observation that the joint histogram of well-registered
images has just a few high peaks in contrast to poorly
registered images where the joint histogram is rather flat.
Thus, for well-registered images, the entropy of the joint
probability distribution HI1;I2

is low, while the entropy of
the individual probability distributions HI1

and HI2
is

nearly constant as long as the overlapping image parts are
roughly the same.

It is straightforward to use MI for calculating how well
two image regions correspond. However, typical windows
of 9� 9 or 11� 11 pixels do not contain enough pixels for
deriving meaningful probability distributions [20], [21].
Larger windows would be needed, but larger windows are
known to increase blurring of discontinuities [10]. There-
fore, we use a computation of MI that is based on the whole
image and allows pixelwise matching [23], [24]. It works by
using an initial disparity image that defines corresponding
pixels of both images for computing the required prob-
ability distributions. Since this computation considers the
whole image, the probability distributions become very
reliable. A Taylor expansion of MI allows the derivation of a
cost matrix that defines the matching cost for each
combination of intensities [23]. This lookup table can be
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used by any window or pixel-based stereo matching
method. The required initial disparity image can be set to
random values in the beginning and iteratively refined.
Each iteration uses the previous disparity image for
computing a new matching cost lookup table. It has been
found [23] that three iterations result already in a nearly
stable, final disparity image.

In this paper, we use the efficient Hierarchical MI (HMI)
method [24], which starts with images that are downscaled
by factor 16 and random disparities. The cost matrix is
calculated for matching, which leads to the first calculated
disparity image by any stereo method. The disparity image
is used for recalculating the cost matrix. The process is
iterated a few times before the disparity is upscaled for
serving as initial guess for matching at one-eighth of the full
resolution. Upscaling and matching is repeated until the full
resolution is reached. It should be noted that the disparity
image of the lower resolution level is used only for
calculating the matching costs of the higher resolution
level, but not for restricting the disparity range, as this
could easily lead to missing small objects. It has been found
[24] that the hierarchical calculation performs as well as the
iterative one. However, its theoretical runtime overhead
compared to a noniterative algorithm (i.e., with another
matching cost like BT) is just 14 percent if the runtime of the
stereo method depends linearly on the number of pixels
and disparities.

3.4 Summary

In the experiments below, we evaluate the parametric
costs AD, BT, Mean/BT, LoG/BT, BilSub/BT, NCC,
ZSAD, and ZNCC; the nonparametric costs Rank/AD,
Rank/BT, SoftRank/AD, SoftRank/BT, Census, and Ordi-
nal; and HMI. Of these, NCC, ZSAD, ZNCC, and Ordinal
can only be used in window-based matching. While we
have tested all possible combinations of filters and AD/
BT, here we include only those combinations that give
significant differences.

4 STEREO ALGORITHMS

The performance of a matching cost can depend on the
algorithm that uses the cost. We thus consider three
different stereo algorithms: a local, window-based method
(Window), the semiglobal method of [24] (SGM), and a
global method using GC [44]. We implemented each of the
matching costs for each stereo method, except for NCC,
ZSAD, ZNCC, and Ordinal which can only be used with the
local method.

Our local stereo method (Window) is a simple window-
based approach [9], [10], [33]. We use a square window of
9� 9 pixels. After aggregating the matching cost over the
window, the disparity with the lowest aggregated cost is
selected (winner-takes-all). Subpixel interpolation is per-
formed by fitting a parabola to the winning cost value and
its neighbors. This is followed by a left-right consistency
check for invalidating occlusions and mismatches and
invalidation of disparity segments smaller than 160 pixels
[45]. Invalid disparity areas are filled by propagating
neighboring small (i.e., background) disparity values. The
reason we perform these postprocessing steps is to reduce

the overall errors. One might argue that comparing the
“raw” results would provide a more direct assessment of
the different costs. We have found, however, that the
resulting large errors impede a fair comparison of the costs,
while the postprocessing greatly improves the discrimina-
tion between the costs.

Our second stereo algorithm is the SGM method [24]. We
selected it as an approach in-between local and global
matching. There are other approaches in this category, e.g.,
dynamic programming (DP) [33], [46], [47], but SGM
outperforms DP and yields no streaking artifacts. SGM
aims to minimize a global 2D energy function EðDÞ by
solving a large number of 1D minimization problems.
Following [24], the actual energy used is

EðDÞ ¼
X

p

Cðp; DpÞ þ
X
q2Np

P1T½jDp �Dqj ¼ 1�

0
@

þ
X
q2Np

P2T½jDp �Dqj > 1�

1
A:

ð12Þ

The first term of (12) calculates the sum of a pixelwise
matching cost Cðp; DpÞ (as defined in Section 3) for all
pixels p at their disparities Dp. The second term penalizes
small disparity differences of neighboring pixels Np of p
with the cost P1. Similarly, the third term penalizes larger
disparity steps (i.e., discontinuities) with a higher penalty
P2. The value of P2 is adapted to the local intensity gradient
by P2 ¼ P 02

jIbp�Ibqj for the neighboring pixels p and q. This
results in sharper depth discontinuities as they mostly
coincide with intensity variations.

SGM calculatesEðDÞ along 1D paths from eight directions
toward each pixel of interest using dynamic programming.
The costs of all paths are summed for each pixel and
disparity. The disparity is then determined by winner-
takes-all. Subpixel interpolation is performed as well as a
left-right consistency check. Disparity segments below the
size of 20 pixels are invalidated for getting rid of small
patches of outliers. Invalid disparities are again interpolated.

Finally, we use a GC stereo algorithm as a representative
of a global method [44], [48], [49]. Our implementation is
based on the MRF library provided by [50]. We tried to use
the same energy function EðDÞ as for SGM. However, we
found that for GC, it gives better results to adapt the cost P2

not linearly with the intensity gradient, but rather to double
the value of P2 for gradients below a given threshold, as
proposed in [44]. Like SGM, GC only approximates the
global minimum of EðDÞ, but it utilizes the full 2D
connectivity for the smoothness term in contrast to SGM,
which optimizes separately along 1D paths. Our GC
implementation, unlike Window and SGM, neither includes
subpixel interpolation nor accounts for occlusions.

We manually tuned the smoothness parameters of SGM
and GC individually for each cost for the best performance
on the radiometrically unchanged Tsukuba, Venus, Teddy,
and Cones images of the Middlebury test [34]. After the
tuning phase, all parameters were kept constant for all
images and experiments. This approach allows to concen-
trate on the performance of the matching cost rather than
the stereo method.
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5 EVALUATION

In this section, we test all possible combinations of
matching costs with the local, semiglobal, and global stereo
algorithms on standard test images without radiometric
changes (Section 5.1), on images with simulated radio-
metric changes (Section 5.2), and on images with real
radiometric changes (Section 5.3). Subsequently, we in-
vestigate and discuss scene dependence (Section 5.4) and
cost discriminability (Section 5.5). In all of these experi-
ments, we focus on intensity images. We then explore the
benefit of color matching (Section 5.6), and finally, compare
the runtime of the different costs (Section 5.7).

5.1 Results on Images without
Radiometric Changes

As a baseline for our subsequent experiments, we use the
standard Middlebury stereo data sets Tsukuba, Venus,
Teddy, and Cones [33], [51]. Fig. 2 shows the left images of
each set. Since these images were taken in a laboratory with
the same camera settings and under the same lighting
conditions, radiometric changes are expected to be very
small. We use a disparity range of 16 pixels for Tsukuba,
32 pixels for Venus, and 64 pixels for Teddy and Cones.

Additionally, we have created new stereo data sets with
ground truth using the structured lighting technique of [51],
which are available at http://vision.middlebury.edu/
stereo/data/. In this paper, we use the six data sets shown
in Fig. 3: Art, Books, Dolls, Laundry, Moebius, and
Reindeer. Each data set consists of seven rectified views
taken from equidistant points along a line, as well as
ground-truth disparity maps for viewpoint 2 and 6. In this
paper, we consider only binocular methods, so we use
images 2 and 6 as left and right input images. Also, we
downsample the original images to one-third of their size,
resulting in images of roughly 460� 370 pixels with a
disparity range of 80 pixels.

We systematically tuned the smoothness parameters of
SGM and GC individually for each cost for the best

performance on the Tsukuba, Venus, Teddy, and Cones
images. After the tuning phase, all parameters were kept
constant for all images and experiments. Thus, the radio-
metrically unchanged Tsukuba, Venus, Teddy, and Cones set
forms the training set, while radiometrically changed
versions of them as well as the new data sets are the test sets.

In all experiments, we evaluate the calculated disparity
image by counting the number of pixels with disparities that
differ by more than 1 from the ground truth. In our
statistics, we ignore occluded areas, because disparities at
occlusions can, by definition, not be determined by
matching of two images, but rather by extrapolation, which
is not the focus of this paper. Also, our GC implementation
does not consider occlusions, unlike Window and SGM. For
the correlation results, we also ignore an area of 4 pixels
(i.e., the radius of the correlation window) at the image
border. Our final error measure is the mean error
percentage of all nonoccluded pixels over the used data sets.

Fig. 4 shows, for all costs and stereo methods, the errors in
all nonoccluded areas without postfiltering, with postfilter-
ing, and only near discontinuities of the Tsukuba, Venus,
Teddy, and Cones image set. Filtering is not done for GC
since its strong continuity model prevents small outlier
regions. Clearly, for all costs, the errors at discontinuities
contribute most to the total error. Not surprisingly, the errors
of the Window method are higher than that of SGM and GC.

Since many researchers use the BT cost for global
methods, it is a bit surprising that, in our test, BT performs
at the same level as AD for most tested stereo methods. It
turns out that, when evaluating the “raw” matching results
of the SGM stereo method, AD in fact yields more errors
than BT in regions with high-frequency texture. However,
most such errors are detected by the consistency check
(before postfiltering) and the missing disparities are mostly
isolated pixels or very small areas that are easily recovered
by interpolation. The Window method supports a decision
by using the neighborhood, which contains many pixels
that can be well matched by AD. Similarly, GC uses a strong
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Fig. 2. The left images of the Tsukuba, Venus, Teddy, and Cones stereo pairs, which are used as training set.

Fig. 3. The new Art, Books, Dolls, Laundry, Moebius, and Reindeer stereo pairs, which are used as test set.



2D smoothness constraint that helps finding the correct
disparities from the neighborhood as well. Thus, BT
performs as expected, but the assumed disadvantage of
AD is easily compensated by consistency checking and
interpolation or strong smoothing constraints. An exception
is Rank-filtered images when using SGM. Here, AD is much
less stable than BT.

The mean filter increases the errors near discontinuities
and, in case of SGM and GC, the overall error. The LoG filter
also blurs discontinuities, but reduces errors at other places,
compared to AD or BT. In contrast, the BilSub filter reduces
both errors and is one of the best cost for all three stereo
methods. Although the ZSAD, NCC, and ZNCC costs reduce
the overall error compared to SAD and BT, they have the
highest errors near discontinuities. NCC and ZNCC amplify
the effect of outliers in the correlation window, which appear
near discontinuities, due to the multiplication of intensities.

The performance of Rank and SoftRank is different for
the three stereo methods. In the Window-based method,
SoftRank is slightly worse than Rank, while it is better when
SGM is used. The performance is equal for GC. In the case
of SGM, the combination with BT produces much lower
errors than with AD. This may be explained by the property
of BT to reduce the dissimilarity in high-frequency regions.
This appears to be more important for SGM, because SGM
relies more on the matching cost as the smoothness
constraint is applied along 1D paths, as opposed to Window
and GC, which utilize the full 2D connectivity. As reported
in the literature [13], [37], Census performs better than Rank
and is among the best matching costs for all methods. The
ordinal measure, however, performs slightly worse than
Rank and Census. Finally, HMI appears not very successful
in combination with the window-based method, but it
performs very well with SGM and GC. The same observa-
tions can be made from the disparity images that are shown
in Figs. 5, 6, and 7 for the Teddy images. Recall that the GC
implementation does not include a treatment for occlusions;
thus, errors to the left of object borders should be ignored.

The same experiment has been done with the new Art,
Books, Dolls, Laundry, Reindeer, and Moebius image pairs.
The result is shown in Fig. 8. It should be noted that our
new images are more challenging than the standard test sets
used in the previous sections due to the increased disparity
range, lack of texture, and the more complicated scene
geometry. This is reflected in the higher matching errors:
The best methods now have errors of about 8 percent, as
opposed to about 3 percent before. However, the ordering

of all costs is the same as the ordering in Fig. 4, except for
BT, AD, and HMI in combination with SGM and GC, which
perform worse. We temporarily tried tuning the smooth-
ness parameters for the new images, but this did not
reduced errors visibly. Visual inspection of the computed
disparity images revealed that objects in front of low
textured background tend to be connected together with BT,
AD, and HMI in contrast to the best performing costs BilSub
and Census. This makes sense, as the latter concentrate on
small, high-frequency texture variations, which are even
there in low textured image parts. Thus, the worse
performance is due to the more challenging scene content.

It may be surprising that many of the costs perform
better than AD and BT on these input images without
radiometric differences. It would rather appear logical that
taking the absolute difference is best if corresponding
points have exactly the same value. However, even though
the images have been taken under controlled conditions,
some radiometric differences are inherent, surfaces are not
Lambertian, and the brightness constancy assumption is
still violated. BilSub, Census, and HMI can compensate for
these small differences.

To summarize, the performance of the matching costs
can depend on the stereo method used. Nevertheless,
BilSub and Census are among the best performers with all
three stereo methods. HMI works equally well for the
semiglobal method and is best for the global method on
some data sets.

5.2 Simulated Radiometric Changes

In the next experiments, we explore the behavior of the
matching costs on the Tsukuba, Venus, Teddy, and Cones
training image set (Fig. 2) with additional radiometric
changes. Thus, we use the radiometrically changed versions
of the training set as test set. First, the global brightness of
the right stereo image is changed linearly (i.e., gain change)
and nonlinearly (e.g., gamma change). The left stereo
images remain unchanged. Furthermore, we apply a local
brightness change that mimics a vignetting effect, i.e., the
brightness decreases proportionally with the distance to the
image center. This transformation is performed on both
stereo images. Finally, we contaminate both stereo images
with varying levels of Gaussian noise.

Since there are too many cost variants to show in one
plot, we compare parametric and nonparametric costs
separately (Figs. 9 and 10), and then compare the winners
with HMI (Fig. 11).
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Fig. 4. Mean errors over the Tsukuba, Venus, Teddy, and Cones training image pairs. The errors are shown before and after postfiltering in all

nonoccluded areas as well as the fraction of these errors occurring near depth discontinuities. (a) Window. (b) SGM. (c) GC.



Figs. 9a, 9b, and 9c show the behavior of all parametric
matching costs and filters on images with a gain change.
The errors of AD and BT increase very quickly with
decreasing brightness. This can be expected because the
absolute difference is based on the assumption that
corresponding pixels have the same values, which is
violated. The mean and LoG filters as well as ZSAD can
compensate some of the differences, but they also degrade
with higher differences. All three costs are designed for
compensating an offset, but not a gain (i.e., scale) change.
The bilateral background subtraction filter performs best for
all stereo methods. It is only outperformed for s < 0:5 by
NCC and ZNCC, which show a very constant performance.
The reason for the decreasing performance of BilSub with
increasing differences is that BilSub, like LoG, mean, and

ZSAD compensates only for a constant offset, not for a gain
change. NCC and ZNCC are the only parametric costs that
explicitly account for a gain change. The reason for the
sudden increase in errors below s ¼ 0:1 is that the
transformed images are stored into 8 bits. Thus, low values
of s also cause an information loss.

The same observations can be made for the case of global
gamma changes, as shown in Figs. 9d, 9e, and 9f. The only
exception is NCC, which performed in contrast to ZNCC
much worse with increasing gamma values. It seems as if
the nonlinear intensity change can be well compensated by
the zero-mean calculation of ZNCC. In the case of the
artificial vignetting effect (Figs. 9g, 9h, and 9i), AD and BT
again degrade quickly, while all other costs can maintain
their error level. BilSub is the best-performing cost in all

HIRSCHMÜLLER AND SCHARSTEIN: EVALUATION OF STEREO MATCHING COSTS ON IMAGES WITH RADIOMETRIC DIFFERENCES 1589

Fig. 5. Computed disparity images of the Teddy pair without radiometric transformations using the Window stereo method. (a) SAD. (b) BT.

(c) Mean/BT. (d) LoG/BT. (e) BilSub/BT. (f) ZSAD. (g) NCC. (h) ZNCC. (i) Rank/SAD. (j) Rank/BT. (k) SoftRank/SAD. (l) SoftRank/BT.

(m) Census. (n) Ordinal. (o) HMI. (p) GroundTruth.

Fig. 6. Computed disparity images of the Teddy pair without radiometric transformations using the SGM stereo method. (a) AD. (b) BT. (c) Mean/BT.

(d) LoG/BT. (e) BilSub/BT. (f) Rank/AD. (g) Rank/BT. (h) SoftRank/AD. (i) SoftRank/BT. (j) Census. (k) HMI. (l) GroundTruth.



cases. The results for additive Gaussian noise with varying
signal-to-noise ratios (SNR) are shown in Figs. 9j, 9k, and 9l.
Higher SNR numbers mean lower noise. For the Window
method, the different costs perform quite similar, probably
since summing over a fixed window acts like averaging,
which reduces the effect of Gaussian noise for all costs. The
situation is different for SGM and GC, where LoG and
BilSub perform worst at a certain noise level. Thus, the best
parametric matching cost was the BilSub filter, except for
large gain or gamma changes, since it does not explicitly
handle gain changes. It has also problems with high noise
levels. ZNCC has a higher initial error, but its performance
is fairly constant, even with high radiometric changes.

Fig. 10 shows the same experiments with nonparametric
matching costs. It can be seen that all nonparametric costs
compensate the simulated changes quite well. Census is
here the clear winner in all cases with all stereo methods.

In accordance with our findings, we selected BilSub and
ZNCC as the best parametric costs and Census as the best
nonparametric cost. These three costs are shown together
with HMI in Fig. 11. In the direct comparison, Census
performed as well as BilSub in the best case (i.e., without
any changes), but the performance of Census is more
constant, even if changes are higher. In comparison to
ZNCC, Census has in all cases a lower error. The
performance of HMI on images with global gain or gamma
changes (Figs. 11a, 11b, 11c, 11d, 11e, and 11f) is similar to
ZNCC in case of Window and similar to Census in case of

SGM and GC. The likely reason is that Census also reduces
the effect of outliers near depth discontinuities. This is
important for a window-based method, but less so for pixel-
based methods like SGM and GC. On images with the
simulated vignetting effect (Figs. 11g, 11h, and 11i), the
error of HMI increases much faster than that of all other
method. The reason for the rather bad performance of HMI
is that its cost is explicitly based on the assumption of a
complex, but global radiometric transformation. The vignet-
ting effect locally changes the brightness. BilSub and ZNCC
can also compensate only global changes, but only related
to their rather small windows. Furthermore, Census
requires only an unchanged order, which is maintained.
The situation is inverted on images with noise (Figs. 11j,
11k, and 11l), where HMI performs best for SGM and GC
and at high noise levels also for Window. One reason for
this is that HMI, unlike any of the other costs, implicitly
models the noise distribution since the matching costs are
derived from the histograms, which are collected over the
whole image.

We have also examined to what extent our results so far
might be influenced by the scene structure, calibration
errors, or the inherent radiometric distortions of the test
images. To explore this issue, we created four new stereo
pairs with constant disparities by simply shifting the left
images of the Tsukuba, Venus, Teddy, and Cones pairs
(Fig. 2) by half of the disparity range used for each of the
four original pairs. Thus, the resulting stereo pairs represent
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Fig. 8. Mean errors over the Art, Books, Dolls, Laundry, Reindeer, and Moebius test image pairs before and after postfiltering in all nonoccluded

areas, as well as the fraction of these errors occurring near depth discontinuities. (a) Window. (b) SGM. (c) GC.

Fig. 7. Computed disparity images of the Teddy pair without radiometric transformations using the GC stereo method. (a) AD. (b) BT. (c) Mean/BT.
(d) LoG/BT. (e) BilSub/BT. (f) Rank/AD. (g) Rank/BT. (h) SoftRank/AD. (i) SoftRank/BT. (j) Census. (k) HMI. (l) GroundTruth.



a scene with a perfectly fronto-parallel plane onto which
real images are projected as texture. There is no calibration
error and corresponding pixels are radiometrically exactly
the same. We ran our entire set of experiments on these new
images and found that the behavior of the matching costs in
the presence of different radiometric changes is essentially
the same for the perfectly controlled case with planar
images and the standard test images.

In summary, Census appears overall to be the most
robust cost and it is in many cases the best. HMI can

perform equally or slightly better on the pixelwise matching

methods SGM and GC and it is more stable in the presence

of image noise. On the other hand, HMI performs worse on

images with local changes like strong vignetting.

5.3 Real Exposure and Light Source Changes

As noted in Section 1, existing stereo test data sets are
unusually radiometrically “clean” and do not require

robust matching costs necessary for real-world stereo

applications (unless, as in the previous sections, changes
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Fig. 9. Parametric matching costs on the Tsukuba, Venus, Teddy, and Cones data sets with simulated radiometric changes. All curves show the
mean error in unoccluded areas over the four data sets using stereo methods with postfiltering. The columns correspond to the three stereo
methods, while each row examines a different type of intensity change or noise. (a) Global gain change (Window). (b) Global gain change (SGM).
(c) Global gain change (GC). (d) Global gamma change (Window). (e) Global gamma change (SGM). (f) Global gamma change (GC). (g) Vignetting
(Window). (h) Vignetting (SGM). (i) Vignetting (GC). (j) Adding Gaussian noise (Window). (k) Adding Gaussian noise (SGM). (l) Adding Gaussian
noise (GC).



are introduced synthetically). To remedy this situation, the
six new stereo data sets (Fig. 3) additionally contain images
of all scenes and viewpoints taken with three different
exposures and under three different configurations of the
light sources. We thus have nine different images from each
viewpoint that exhibit significant radiometric differences.
Fig. 12 shows both exposure and lighting variations of the
left image of the Art data set.

We tested all combinations of costs and methods over
all 3� 3 combinations of either exposure or light changes.
We found again that BilSub and ZNCC performed best

among the parametric costs and that Census was the
winner among the nonparametric costs. Here, we thus
only compare the winning costs and we also include BT as
“baseline” cost. The total matching error is calculated as
before as the mean percentage of outliers (disparity error
>1) over all six data sets. The resulting curves are shown
in Fig. 13.

Figs. 13a, 13b, and 13c show the result on pictures with
different exposure settings. The change of exposure is
supposed to be a global transformation, which should be
similar to a global change of brightness, i.e., gain change.
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Fig. 10. Nonparametric matching costs on the Tsukuba, Venus, Teddy, and Cones data sets with simulated radiometric changes. (a) Global gain

change (Window). (b) Global gain change (SGM). (c) Global gain change (GC). (d) Global gamma change (Window). (e) Global gamma change

(SGM). (f) Global gamma change (GC). (g) Vignetting (Window). (h) Vignetting (SGM). (i) Vignetting (GC). (j) Adding Gaussian noise (Window).

(k) Adding Gaussian noise (SGM). (l) Adding Gaussian noise (GC).



The behavior of BilSub, Census, and ZNCC is as expected.

Census and ZNCC can almost fully compensate for the

differences, while BilSub has problems with higher differ-

ences. We have already observed in Section 5.1 that HMI

has more problems on this complex data set than the other

costs. Of course, this does not change when introducing

radiometric changes and HMI performs consistently much

worse than Census.
Changing the position and type of the light sources

results in many local radiometric differences. The curves in

Figs. 13d, 13e, and 13f show that matching images taken

under different lighting conditions increases the error much

more than before. However, the order of performance of all

costs remains the same for all stereo methods. The rather

bad performance of HMI can be expected in this experiment

due to the many local radiometric differences.
Thus, the findings are essentially the same as for the

images with simulated changes. Census performs best with

all stereo methods on images with exposure and light

changes. Next is BilSub, which only has more problems
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Fig. 11. The best nonparametric and parametric matching costs as well as HMI on the Tsukuba, Venus, Teddy, and Cones sets with

simulated radiometric changes. (a) Global gain change (Window). (b) Global gain change (SGM). (c) Global gain change (GC). (d) Global

gamma change (Window). (e) Global gamma change (SGM). (f) Global gamma change (GC). (g) Vignetting (Window). (h) Vignetting (SGM).

(i) Vignetting (GC). (j) Adding Gaussian noise (Window). (k) Adding Gaussian noise (SGM). (l) Adding Gaussian noise (GC).



with very large changes. HMI has more problems even in
the case of radiometrically similar images, which is due to
the more complex scene structure. Also, HMI’s inability to
handle local radiometric changes can be observed again.

5.4 Variation of Results over Different Scenes

In our experiments so far, we show the mean error over the
training or test set, which measures the average perfor-
mance over images of different content and complexity.
Additionally, it is an important question to what degree
the performance of a certain cost depends on the scene
content. This is statistically measured by the variance.
However, simply reporting the variance of errors over all
image pairs is not helpful since the variances are always
large due to the widely varying complexity of the scenes.
For instance, on the Venus image pair, most costs yield
errors of about 1 percent, while on the Art images the
errors are about 10 percent.

To obtain a meaningful comparison of errors across
scenes with different complexity, we normalize for each
scene by the mean error over all costs. This is done for each
stereo method and image pair separately. Thus, each error

is divided by the mean error over all costs for the used
stereo method and image pair, causing the normalized error
to vary around the mean of 1.0. Fig. 14 shows that the
performance of BilSub is mostly better than the mean and
the performance of Census is always better than the mean.
It also shows that the variation of errors is rather small for
BilSub and Census, regardless of training or test images. In
contrast, the performance of AD, BT, and also HMI is rather
wide-spread. They are pretty good for the training images
and rather bad for the more complex test images. This has
already been observed in the previous section.

To summarize, the performance for most matching costs
is fairly independent of the scene. BilSub and Census
perform particularly well on all scenes. However, the
performance of some matching costs are scene dependent,
in particular, AD, BT, and HMI.

5.5 Discriminability of Costs

Another interesting issue is the discriminative power of
matching costs. From a theoretical point of view, a cost like
pixelwise Census with a 9� 7 neighborhood can distinguish
at most 62 different combinations. In contrast, the pixelwise
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Fig. 13. Results with different combinations of exposure or lighting conditions. The notation i/k indicates the combination of (exposure or
lighting) settings, i.e., that the left image with setting i is matched with the right image with setting k. Thus, 1/1, 2/2, and 3/3 mean that the
same settings are used for both images, which is the radiometrically unchanged case. For each cost, we plot the mean error over all six stereo
pairs. (a) Different exposure (Window). (b) Different exposure (SGM). (c) Different exposure (GC). (d) Different lighting (Window). (e) Different
lighting (SGM). (f) Different lighting (GC).

Fig. 12. The left image of the Art data set with three different exposures and under three different light conditions. The right images have been

captured under the same conditions, such that 3� 3 combinations of matching are possible, separately for different exposures and light conditions.

(a) Exposure 1. (b) Exposure 2. (c) Exposure 3. (d) Lighting 1. (e) Lighting 2. (f) Lighting 3.



absolute difference can distinguish up to 255 cases in 8-bit
intensity images. However, the 62 different combinations of
Census encode valuable high-frequency variations of the
local neighborhood. In contrast, it is probably not important
to distinguish between highly differing intensities as in case
of AD.

For an experimental evaluation of discriminability, we
use all 10 stereo images with a large disparity range of 256
and count the number of different responses of each
matching cost along the disparity range. We ignore the left
255 pixels of each image in order to be able to utilize the full
disparity range. Fig. 15 shows the average number of
responses for all matching costs. The highest differences are
visible when using the matching costs pixelwise (Fig. 15a).
BilSub has the lowest discriminability since the filter leaves
only small high-frequency variations. Census is the second
lowest and about half the value as AD. All Rank variants
are highest because they use a much larger neighborhood of
15� 15 pixels. The reason that HMI has a higher discrimin-
ability than AD is that HMI distinguishes between pairings
of type ði; kÞ and ðk; iÞ, in contrast to AD.

Fig. 15b shows the mean number of different values
using a small 3� 3 neighborhood. Costs like BilSub and
Census benefit most from this aggregation and reduce the
distance to other costs. The result of HMI is already
saturated due to the used disparity range of 256. The
results of using the full correlation window size are shown
in Fig. 15c. Almost all costs give different responses along
the whole disparity range. This figure also includes costs
that can only be used with a correlation window.

The Ordinal cost has a surprisingly low discriminative
power. In theory, only 40 values can be distinguished with

a 9� 9 window. In practice, it appears to be about half. It

would appear logical that a matching cost with such a low

discriminability causes much more errors for increased

disparity ranges. We have compared the Window method

with the Ordinal cost on all data sets for the standard and

the extended disparity ranges and we found that the error

is only marginally higher in case of using the extended

disparity range of 256. The solution to this apparent

contradiction is that the Ordinal cost compresses a wide

range of mismatches to the same value. Thus, it dis-

criminates only significant information. This is a good

example that discriminative power is not necessarily

correlated with performance.
To summarize, this test shows that the discriminability of

the best-performing costs BilSub and Census is actually

lowest. However, these costs benefit more from aggregation

than other costs, which compensates the apparent draw-

back. Furthermore, the test shows that discriminative power

is not necessarily correlated with performance.

5.6 Benefit of Color Matching

In all experiments up to now, we focused on one radio-

metric channel, i.e., intensity. In many applications, how-

ever, color images are available, and one might expect that

utilizing color should increase matching performance. We

therefore implemented the most promising costs for color,

by applying them separately on the red, green, and blue

components. The final cost for a pixel is computed by

summing the pixelwise costs over the color components.

For BilSub, we use the original definition [12] and compute

the radiometric distance in CIELab color space. Fig. 16
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Fig. 15. Mean number of different cost values over a disparity range of 256 on 10 stereo pairs. (a) Pixelwise. (b) 3� 3 Window. (c) 9� 9 Window.

Fig. 14. Visualization of variation of normalized errors over the four training and six test image pairs. (a) Window. (b) SGM. (c) GC.



shows the comparison of intensity and color matching,
separately for the training and test sets.

Surprisingly, it can be seen that using color results in
little overall benefit. While there is a consistent (but small)
improvement for the test images, color actually makes
things worse for the training set in almost all cases. It
appears that some of the training images, in particular,
Venus and Teddy, have nonuniform color variations that
negatively affect the matching. The intensity-based costs in
contrast seem to be robust to these color variations that are
likely caused by color preprocessing done automatically by
many consumer-grade cameras. Even on the (new) test
images where such color distortions do not appear to be
present, the performance gain for color is rather small.
However, note that a dramatic benefit from using color
could only be expected if locally disambiguating texture
was lost when converting from color to intensity (gray)
values. This appears quite unlikely in the real world, as
most color changes also yield intensity changes. Thus, the
benefit one would intuitively expect from using colors
appears small in practice. In addition, note that (unless a
multisensor camera is employed) each of the color channels
has a lower effective resolution since it is interpolated from
the Bayer pattern on the color sensor.

In summary, the potential benefit from using color
information appears to be limited, and color might be less
robust and more easily affected by the camera than intensity
information. A deeper investigation into utilizing color for
matching is beyond the scope of this paper, but is clearly an
important topic for future research.

5.7 Comparison of Runtime

In addition to the qualitative and quantitative performance
of different matching costs, the runtime can also be an
important issue for different applications. We implemented
all methods ourselves in C. We tried to make them efficient,
but without putting too much effort into optimization. The
runtime is measured on a 2.6 GHz Xeon CPU using the
Teddy image pair, which has a size of 450� 375 pixel and a
disparity range of 64 pixels. The runtime includes reading
the images and storing the costs in an array for all pixels
and all disparities.

Table 1 lists all filters and matching costs that are suitable
for pixelwise matching. The table shows the runtime for
preprocessing both intensity input images, which depends
on the number of pixels N , and for matching, which
additionally depends on the disparity range D. The most
simple and therefore fastest cost is AD. BT is much slower

than AD, because it requires many comparisons in the
innermost loop. The majority of the runtime for AD is
actually used for storing the matching cost in the cost array
because it has a size of 450� 375� 64 integer values and is
too large for the CPU cache. The creation of this array is
required for global algorithms. Therefore, local, window-
based algorithms could be much faster. However, since the
overhead is included in all measurements, we consider
including it to be fair.

The runtime of the alternate MMX implementations of
the LoG and Rank filter shows that significant speedup is
possible. However, it also shows that the performance gain
depends heavily on the individual method. The same
applies to hardware implementations. Real-time, hardware
implementations have been reported for Rank and Census
[52], [53], but it is unclear if other methods would benefit in
the same way from a hardware implementation.

The runtime of all filters directly depends on the
neighborhood size. A probably significant speedup could
be possible by recursive or separable implementations that
update individual pixel or combine a horizontal and a
vertical pass with 1-pixel wide windows. However, not all
filters can be implemented in this way, e.g., the separable
implementation of BilSub is only approximate, but real-time
performance has been reported [11].

Computation of the Hamming distance for Census has
been done by summing the results of 8-bit table lookups for
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TABLE 1
Runtime of Filters and Pixelwise Costs on a 2.6 GHz Xeon CPU

for the Intensity Teddy Image Pair

Fig. 16. Comparison of intensity and color matching on the training and test sets. (a) Window. (b) SGM. (c) GC.



the 64-bit values. MI appears very fast, because it has only to
be computed once for each image pair. After the preparation,
only a table lookup is required for getting the pixelwise
matching cost. However, HMI needs to be computed
hierarchically, which additionally increases the total runtime
in case of Window and SGM by about 14 percent. The
overhead of GC is lower since its internal complexity is
higher. Therefore, there is more benefit in the hierarchical
processing, but the method itself is much slower.

Table 2 shows the time for computing the window-based
matching costs using a 9� 9 window. The runtime can be
significantly reduced and made independent of the window
size W by using a recursive implementation, as reported in
the literature [9], [10], [54], but we did not do that. For the
ordinal measure, we tried an efficient implementation that
sorts the intensities of both windows using quicksort, but
maintains a linking between the original and sorted pixels
for fast computation of the cost. A further significant
speedup is expected by a recursive implementation using a
heap tree as data structure [14].

We give the runtimes of our implementations for
showing the differences in computation time of all
matching costs. The actual runtimes should be taken with
a grain of salt since running the same code on different
CPU architectures will not only scale all timings, but may
change their relative sizes as well. Furthermore, some
implementation tricks may increase the speed significantly.
Nevertheless, the runtimes serve as upper bounds, and we
feel that the order of the given runtimes reflects the
expected computational burden of the individual methods.

6 CONCLUSION

We have compared 15 different cost functions for stereo
matching on images with simulated and real radiometric
differences, and also on radiometrically “clean” images.
Most costs were evaluated with three different stereo
algorithms: a local correlation method, a semiglobal match-
ing method, and a global method using graph cuts. We
found that the performance of matching cost functions can
depend on the stereo method that uses it.

We identified four methods of particular interest. First,
filtering with bilateral background subtraction (BilSub)
followed by the sampling insensitive absolute difference
performed in all experiments with all stereo algorithms as
one of the best costs if radiometric changes are not too
severe. While it only compensates for a local change of

offset, it does not blur discontinuities as most other filters
and costs do.

Second, for window-based matching, we found ZNCC to
be better than BilSub in the case of strong radiometric
changes, because ZNCC compensates for local gain and
offset changes. However, it had the highest error of all costs
at discontinuities, which makes BilSub to be more attractive
if radiometric differences are expected to be moderate.

Third, Census performed very well throughout all
experiments with simulated and real radiometric differ-
ences, except in the presence of strong image noise. Like all
nonparametric matching costs, Census tolerates all radio-
metric distortions that do not change the local ordering of
intensities. It was consistently better than ZNCC and in
almost all cases better than BilSub.

Finally, we tested pixelwise matching using Mutual
Information, which was calculated hierarchically over the
whole image (HMI). It compensates for complex global
radiometric relations between the input images. It per-
formed slightly better than Census in case of low radio-
metric changes and pixelwise matching using the
semiglobal or global stereo method. It also performed best
in case of strong image noise. However, HMI showed
problems with large local radiometric differences, caused,
for example, by the vignetting effect and by non-Lamber-
tian surfaces and lighting changes. Promising directions for
future research include creating local variants of MI that can
handle such local changes.

We observed that costs that can compensate for strong
radiometric changes do also well on images with little or no
apparent radiometric changes. Thus, radiometrically toler-
ant matching costs are also useful in applications where
large radiometric differences are not expected.

We also performed experiments to evaluate the variance
of results and the importance of cost discriminability, and
found that the cost performances are fairly independent of
the scene and are not necessarily correlated with discrimi-
native power.

We also investigated the potential benefit of using color
information, which appears to be rather small, and in some
cases, color is even detrimental. This is clearly an important
topic for future research.

In summary, we found that BilSub performs consis-
tently very well for low radiometric differences; HMI is
slightly better as pixelwise matching cost in some special
cases and for strong image noise; and Census gives the
best and most robust overall performance on all test sets
with all stereo algorithms.
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