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Abstract. Automotive applications based on stereo vision require ro-
bust and fast matching algorithms, which makes semi-global matching
(SGM) a popular method in this field. Typically the Census transform is
used as a cost function, since it is advantageous for outdoor scenes. We
propose an extension based on center-symmetric local binary patterns,
which allows better efficiency and higher matching quality. Our second
contribution exploits knowledge about the three-dimensional structure of
the scene to selectively enforce the smoothness constraints of SGM. It is
shown that information about surface normals can be easily integrated by
weighing the paths according to the gradient of the disparity. The differ-
ent approaches are evaluated on the KITTI benchmark, which provides
real imagery with LIDAR ground truth. The results indicate improved
performance compared to state-of-the-art SGM based algorithms.

Keywords: stereo vision, matching costs, census transform, local binary
pattern, semi-global matching.

1 Introduction

In recent years, driver assistance systems based on vision systems have become
popular. Typical outdoor scenarios contain large scene depth, many detailed
structures and high dynamic illumination, and thus complicate the stereo cor-
respondence problem. Local matching methods usually fail on ambiguous low-
texture areas and sharp depth discontinuities, while global methods are too
slow for practical applications. Thus, semi-global matching (SGM) has become
a popular choice [1–3], providing a good compromise between complexity and
robustness. Many research efforts have been put on creating efficient implemen-
tations either by taking advantage of specific hardware, e.g FPGAs [4], GPUs
[5] and CPUs [6], or by reducing the search space [2]. Geiger [7] achieves the
latter for a local method by building a generative model on robust features on
a sub-sampled grid, which is used to guide the search in the disparity space and
reduce computational complexity. Lately, Hermann [2] used the consistency of
the paths to decide where to restrict the search space and how to integrate the
paths in order to get more robust matches. Disadvantages of the method are the
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inherent priority order for the paths and the need to serialize several parts of
the algorithm, which can be run in parallel in the original SGM formulation.

We propose a weighted integration based on the region’s normal of the surface
each pixel belongs to. This structure could be known a priori, or as in our case is
computed approximately beforehand. We tested the preprocessing step of Geiger
[7] and a coarse-to-fine step using a scaled down image for SGM.

Another crucial part of stereo matching algorithms is the matching cost func-
tion. It has been shown that the Census transform [8] is favorable for outdoor
environments with uncontrolled lighting [9] and/or calibration errors [10]. To
improve efficiency, a sparse version of it has been proposed [11]. For face recog-
nition, histograms of local binary patterns (LBP) have been extremely popular to
provide reliable features. In this context Heikkilä introduced Center-Symmetric
LBPs (CS-LBPs, [12]) to gain speed and robustness to illumination. They have
been proven to be superior to LBPs and several of its variants in this field [13].

Although having a formulation in parts similar to the Census transform, LBP-
based descriptors are too costly for stereo matching. Therefore, we propose to
use the idea of CS-LBPs to construct a likewise Census transform. Furthermore,
we investigate the effect of weighing the pixels in the distance measure.

The rest of the paper is organized as follows. In Section 2 we briefly describe
the Census transform, (CS-)LBPs and introduce the proposed transforms in
detail. Section 3 recaptures the basic SGM formulation and presents our mod-
ifications. We furthermore explain the creation of the surface model. The ex-
perimental results are presented in Section 4. Finally, we conclude the paper in
Section 5.

2 Center-Symmetric Census Transform

The LBP operator [14] describes each pixel using the relative intensity values of
its surrounding neighbors. If the neighbor pixel is of equal or higher intensity, the
value is set to one, otherwise to zero. The results for all neighbors are connected
in a single number coded as a binary pattern (using the sign function s(x) = 1
for x ≥ 0, s(x) = 0 otherwise):

LBPR,N (x, y) =

N−1∑

i=0

s(ni − nc)2
i (1)

where nj corresponds to the intensity of a pixel j of N equally spaced pixels on a
circle of radius R around (x, y) and c is the index of the center pixel. Intensities
of neighbors not lying exactly on a pixel are obtained by bilinear interpolation.

Center-Symmetric LBPs [12] provide a more compact representation, com-
paring only center-symmetric pairs of pixels. In addition, an intensity threshold
T is introduced:

CS-LBPR,N,T (x, y) =

(N/2)−1∑

i=0

s(ni − ni+N/2 − T )2i (2)
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Fig. 1. Center-Symmetric Census Transform for a 5x5 patch

The Census transform [8] shares the idea of LBPs, but applies it to an image
patch of n × m pixels instead of a circular region (now s(u, v) = 0, if u ≤ v,
s(u, v) = 1 otherwise):

CTm,n(x, y) =

n′⊗

i=−n′

m′⊗

j=−m′
s(I(x, y), I(x+ i, y + j)) (3)

with ⊗ being a bit-wise concatenation and n′ = �n/2�, m′ = �m/2�. The match-
ing cost of two pixels is the Hamming distance of the results of the Census
transform for those two. Typical window sizes are 3×3, 5×5 or 9×7 as their
results fit into 8, 32 and 64 bit. Real-time implementations often use 5×5 giving
the best compromise between speed and quality [6].

We now introduce the Center-Symmetric Census Transform (CS-CT) as

CS-CTm,n(x, y) =
⊗

(i,j)∈L

s(I(x − i, y − j), I(x + i, y + j)) (4)

with L = L1 ∪ L2, L1 = R−n′,0 × R−m′,0 \ {(0, 0)}, L2 = R1,n′ × R−m′,1 and
Ra,b = {x ∈ Z|a ≤ x ≤ b}. As in CS-LBPs, only center-symmetric pairs of pixels
are compared, but over an image patch of n ×m (Figure 1a). Like the Sparse
Census transform, CS-CT only needs 31 bits to describe a patch of 9×7 pixels,
but takes all pixels into account.

The gained bits may be used to encode a weighted Hamming Distance (Figure
1b) through bit duplication. This fits well to implementations using hardware
bit count instructions for the Hamming Distance. Alternatively, weighting can
be achieved without additional bits by using lookup tables.

3 Weighted Semi-Global Matching

The SGM method by Hirschmüller[1] seeks to approximate a global MRF regu-
larized cost function by following one dimensional paths L in several directions
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r through the image. According to him it is sufficient to use 8 or 16 paths to
cover the structure of the image (Figure 2a). Along each path, the minimum
cost is calculated by means of dynamic programming

Lr(p, d) =C(p, d) + min(Lr(p− r, d), Lr(p− r, d− 1) + P1

, Lr(p− r, d+ 1) + P1,min
i

Lr(p− r, i) + P2)
(5)

For every pixel p and disparity d, the cost is calculated as the sum of the match-
ing cost C(p, d) and the minimum path cost to the previous pixel, with the
penalties P1 and P2. P1 penalizes slanted surfaces and P2 discontinuities.
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Fig. 2. Path directions in Semi-Global matching and surface dependent weights

The information from all paths is summed for all pixels and disparities giving
the accumulated costs

S(p, d) =
∑

r

Lr(p, d). (6)

The disparity for each pixel is now simply chosen by a winner-takes-all strategy
on S. In contrast to other dynamic programming solutions, explicit occlusion
handling is not possible. So a left-right consistency check is applied, either using
the disparities of the right image DR calculated by the same process or by
diagonal search in S [1].

We propose a method called Weighted Semi-Global matching (wSGM) which
weighs the cost of each path according to its compliance with the associated
surface normal

S(p, d) =
∑

r

W (r,p)Lr(p, d). (7)

Assume we have a plane P which approximates a surface patch. Under central
projection the vanishing line of P will coincide with the direction along which
disparity values of points on this plane are constant. Hence disparities should
be propagated preferably along paths close to this direction. We achieve this by
increasing the weight of SGM paths according to the angle between the path and
the vanishing line. If we imagine a road scene (Figure 2b), the pixels on the road
surface (area 1) should have nearly constant disparity for the horizontal paths
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Fig. 3. Support points with Delaunay triangulation (KITTI test set frame 112)

L0 and L4. Thus we can safely increase the weight for these paths, whereas
vertical structures parallel to the road should benefit from increased weights for
the vertical paths (area 2). Frontal-parallel structures should integrate the paths
evenly (area 3). However, in many applications surface normals are unknown and
as we try to recover the surface by the matching, we encounter a chicken-egg
problem.

We tested two different approaches to resolve this. The first one applies SGM
on a scaled-down image in a coarse-to-fine fashion, while the second is derived
from the method by Geiger [7]. He reduces the search space for stereo matching
by creating a generative model based on support points, which are selected from
a set of image points sampled on a regular grid and matched for stereo correspon-
dence. Robustly matched points which have sufficient texture, a high uniqueness
and are consistent in a left/right-check qualify as support points. They have to
be similar to their surrounding support points as well to ensure they are good
representatives. The generative model constitutes a Delaunay triangulated mesh
with valid disparities which approximates the surface (Figure 3). The weight
adaption can be performed for all image points inside the mesh.

4 Experimental Results and Discussion

To evaluate our approach quantitatively we use the KITTI stereo data set [15],
providing ground-truth obtained by a laser-scanner. The scenes are rather com-
plex, with large regions of poor contrast, lighting differences among stereo pairs
and a large disparity range (dmax = 255). It is separated in a training and test-
ing data set of around 200 images each (Figure 4). Ground truth is provided
freely accessible for the training data set only, results for the testing data set are
obtained by an on-line service.

We implemented our own baseline SGM algorithm using a Census window of
9×7 pixels (SGM CT9,7). It integrates over 16 paths and uses diagonal search
for the left-right check. We use a linear penalty function for the adaption of P2

depending on the image gradients along the path as in [16] and apply the gravi-
tational constraint [3] to disambiguate regions like sky and improve consistency
in vertical regions. Parameters are P1 = 7, P2min = 17, α = 0.5, γ = 100, PG = 3.
Results are ahead of the OpenCV implementation (Table 1, parameters equal to
KITTI website), which can be attributed to the SAD matching costs. To evalu-
ate the benefit of the two sparse encodings, a 5×5 Census transform was tested
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Fig. 4. KITTI training data example, left image, ground truth and baseline SGM
results (top to bottom)

Table 1. Comparing different variants with the KITTI training data set: baseline algo-
rithms, modifications to the Census transform and weighted SGM (Out-Noc: outliers
non-occluded pixels, Out-All: outliers all pixels)

2px 3px
Method Out-Noc Out-All Out-Noc Out-All Density

OpenCV SGM 11.40% 12.92% 8.39% 9.81% 85.50%
SGM CT5,5 10.90% 12.28% 7.34% 8.54% 88.74%
SGM CT9,7 9.39% 10.80% 6.23% 7.44% 91.53%
SGM Sparse-CT9,7 9.70% 11.15% 6.61% 7.87% 91.49%

SGM CS-CT9,7 9.59% 11.06% 6.51% 7.76% 91.97%
SGM WCS-CT9,7 9.12% 10.47% 6.03% 7.17% 92.12%
SGM HWCS-CT9,7 9.09% 10.44% 6.05% 7.20% 92.18%

wSGM WCS-CT9,7 8.99% 10.35% 5.90% 7.04% 91.99%
wSGM HWCS-CT9,7 8.89% 10.25% 5.89% 7.04% 92.17%

as well (SGM CT5,5, adapted parameters, tuned to be optimal). Both sparse
encodings expose a gain in matching quality, CS-CT being slightly better than
Sparse-CT.

For the weighted CS-CT, we tested two variants, one with only additional
horizontal weights (HWCS) and a fully weighted one (WCS), each weighted
region being 3 pixels wide. Both variants perform better than the classic Census
transform, providing a higher matching density and reduced outliers.

wSGM was tested with those two as well and gives additional improvements
(weight factor 3 for preferred paths). Only the results using the generative model
are reported. The scaled down SGM version did not provide any improvements.
Limiting the weight adaption to the vertical and horizontal paths gave a slightly
better result. In urban scenarios, the other surface types are not that prominent
and harder to estimate with a sub-sampling approach due to their smaller size.
Looking at the changes in detail (Figure 5a), one can see that the weighted
Census transform reduces the number of outliers in general, whereas wSGM
leads to large improvements at specific frames (Figure 5c). The poor contrast
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Table 2. Evaluation on KITTI test set: error threshold 3px

Rank Method Out-Noc Out-All Avg-Noc Avg-All Density Runtime

1 PCBP-SS 3.49% 4.79% 0.8 px 1.0 px 100.00% 5 min
2 StereoSLIC 3.99% 5.17% 0.9 px 1.0 px 99.89% 2.3 s
3 PR-Sf+E 4.09% 4.95% 0.9 px 1.0 px 100.00% 200 s
4 PCBP 4.13% 5.45% 0.9 px 1.2 px 100.00% 5 min
5 PR-Sceneflow 4.46% 5.32% 1.0 px 1.1 px 100.00% 150 s
6 wSGM 5.03% 6.24% 1.3 px 1.6 px 97.03% 6 s
7 ATGV 5.05% 6.91% 1.0 px 1.6 px 100.00% 6 min
8 iSGM 5.16% 7.19% 1.2 px 2.1 px 94.70% 8 s
9 AABM 5.50% 6.60% 1.1 px 1.3 px 100.00% 0.43 s
10 SGM 5.83% 7.08% 1.2 px 1.3 px 85.80% 3.7 s

in the example frame leads to mis-propagations on the road surface with SGM.
wSGM increases the weights for the horizontal paths and is able to recover the
real surface.

The results of wSGM + WCS on the KITTI test set (Table 2, with additional
interpolation) show a comparable performance to iSGM and a significant im-
provement to the baseline SGM method. Its runtime is similar or better to the
closest competitors (C++ implementation, no SSE/multi-threading). Optimiza-
tions for speed should offer gains as in [6], enabling real-time performance.

5 Conclusion

We presented a new variant of the Census transform providing higher effi-
ciency and quality. The robustness of SGM was improved by introducing surface
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normal based weights in the path integration step. For both we could show better
performance on the KITTI stereo dataset. The estimation of the correct surface
normals seems to be the crux of wSGM. Calculating a better approximation us-
ing stereo reconstructions from previous frames and optical flow looks promising.
Further future work includes the integration of symbolic map knowledge.
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