L X
FAST MOVING TECHNOLOGY TAUBLI

socket TCP-IP

Technical documentation

W |
B\ \\\\\\Y

TSS.0000.009.04-A - 20/06/2019
© Staubli 2019

A "readme.pdf* document may be delivered on the robot's DVD. It contains the documentation addenda
and errata.

Staubli is a trademark of Staubli International AG, registered in Switzerland and other countries. We reserve the
right to modify product specifications without prior notice.

2129 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

1- Preliminary

Table of Contents

N (=110 0T g =V PP PP PPP PP PPP 5
2 What iS 8 SOCKEE CONMNECTIONveieiiiiiiee ettt ettt e s e e b e e ss e e s e e n e e aa e e e nnn e e snn e e e nn e e nnreeennes 6
21 What is TCP/IP and where did it COME frOM?.........ooiiiiiiiieiiee e 6
2.2 TCP/IP Client and Server CONNECLIONSoiiiiuiiieiiiiite ittt ettt e st e e asb e e e aanbre e e e annreeeeanenes 7
3 COMMUNICALION SCREIMA ...eiiitiiiie ittt ettt ettt e st e e e et et e e e st et e e e aabb e e e e aabbe e e e skt e e e e sbbeeeesbbneeeaan 8
4 What's the Difference Between TCP and UDP? ...t 9
4.1 What they Have 1N COMIMON..........uuiiiiiii e e e e e e e s e e e e e s e s et e e e e e e s s s snteeaeeeaeeeeeannrnenees 10
4.2 HOW TP WOTKS ..ttt etttk e e sttt e e st e e e e aa b bt e e e ek b e e e e et be e e e abneeeeabbeeeeeans 10
4.3 HOW UDP WOTKS ...ttt ettt ettt e ettt e e sttt e e st et e e st e e e e e s s e e e e an e e e e snneeeesanneeeeean 10
4.4 What is the difference between TCP and UDP?ccooiiiiiiiiiiee e 11
5 TCP-IP SOCKEt USING e VAIS ...ttt et e st e e e abb e e e s annneee s 12
51 Create the CommunNication USING SRScoouiiiiiiiiiieiii e e e e s seneee s 12
5.2 SErVEr — CHENt CONTIONIETo e e e e 14
5.3 Initialize the COMMUNICALION..........eiii ettt e e e e s r e e e s nnre e e e s nnreeeeaans 17
5.4 SENG RECEIVE ..ottt ettt e bttt ookttt e s b bttt e okt e et e e s b bt e e s eab bt e e e ambb e e e s anbbeeesnnnneee s 18
55 (B[S Tete] o] o =Tt 1 o] o EO TP O PP OPPPPRPPPPPN 18
5.6 SIOGEE - SIOSELteeiiiitiie ettt ettt ookt s ke s et ettt et e e 19
5.7 example USING dIr€CtY @ SIOD@LA........c.oiuiiiiiiiiii ettt et e 20
5.8 MeSSage frOM the CONSOIE........coiuiiiii ittt e e st e e e s abbe e e e s aabeeeeeaes 20
5.9 Test using an external CIENt — SEIVEN.........cooi i 21
5.10 Test sending array of DitS @nd flOALS...........uuuuiuiiii e ————— 23
5,11 MeSSage from the CONSOIE.........uiiie ettt e et e e e e ebae e e e eanns 25
6 The dOt NELTCP ClIENT — SEIVET ..ottt ettt ettt e st e e e s ab b et e e sabb e e e s annaeee s 26
6.1 (Tt UL (=30 d L= I o] o 1O 1= o1 = (= PP PPPPPRRS 27
6.2 Configure the TCPCleNnt @apPPliCALION...........ue s 27
6.3 EXECULE the TOPSEIVEI.EXE ..eiiiiiiiie ittt ettt ettt e e e sttt e e sttt e e e ettt e e e abbeeeesabbeeeesanbeeeennns 28
6.4 Configure the Tcp Server apPliCALIONoocuuiiii e e s e e snaeee s 28
6.5 g0 0 PO PP PP PPPP 29

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 3/29

History

Date
Revision Modification By
(yyyy-mm-dd)
A Initial release 2019 06 20 A.RUSSO
B
C
Version

That document has been tested with :

e SRS
e SRC:
e Safety:

e SYCON.net:

Keyword

20194.1

s8.8.2

1.000

1.500 Build 180125

socket, tcp-ip, ethernet comunication, ...

4/29

© Staubli 2019 - TSS.000.009.04-A

Socket— TCP IP

1- Preliminary

1 Preliminary

A

DANGER

Instructions drawing the reader's attention to the risks of accidents that could lead to serious
bodily harm if the steps shown are not complied with. In general, this type of indication
describes the potential danger, its possible effects and the necessary steps to reduce the
danger.

It is essential to comply with the instructions to ensure personal safety..

SAFETY

Instructions drawing the reader's attention that its responsibility is engaged if the steps shown
are not complied with.

It is essential to comply with the instructions to maintain the robot safety level.

Caution

Instructions directing the reader's attention to the risks of material damage or failure if the
steps shown are not complied with. It is essential to comply with these instructions to ensure
equipment reliability and performance levels.

ELECTRICAL risk

Instructions drawing the reader's attention to the risks of electrical shock.

It is essential to comply with the instructions to ensure personal safety..

Information

Supplies further information, or underlines a point or an important procedure. This information
must be memorized to make it easier to apply and ensure correct sequencing of the
operations described.

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 5/29

2 What is a socket connection

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite

TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications
running on hosts communicating via an IP network.

Server Client
socket() socket()
bind()
Tisten()
accept() connect()
recv() send()
send() recv()
close() close()

Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on
TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP),
which provides a connectionless datagram service that emphasizes reduced latency over reliability.

2.1 Whatis TCP/IP and where did it come from?

TCP/IP stands for “Transmission Control Protocol / Internet Protocol”. It is basically a network protocol that
defines the details of how data is sent and received through network adapters, hubs, switches, routers and other
network communications hardware.

The TCP/IP protocol was also placed in the public domain so that any software company could develop
networking software based on the protocol. Because it is the primary protocol used on the Internet, and it is in
the public domain, it has become the most popular networking protocol throughout the world and is therefore
well supported by almost all computer systems and networking hardware.

6/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

2 - What is a socket connection

2.2 TCP/IP Client and Server Connections

TCP Client

TCP Server

socket()

4

bind()

Y

listen()

\J

accept()

socket()

connect()

|———— TCP connection establishment ————

blocks until
connection
from client

Y

write()

data (request) —————————®

read()

do something

data(reply) — |

write()

close()

EOF notification

close()

TAUBL/

TCP/IP connections work in a manner similar to a telephone call where someone has to initiate the connection

by dialing the phone.

At the other end of the connection, someone has to be listening for calls and then pick up the line when a call
comes in. In TCP/IP communications, the IP Address is analogous to a telephone number and the port number
would be analogous to a particular extension once the call has been answered.

The “Client” in a TCP/IP connection is the computer or device that “dials the phone” and the “Server” is the
computer that is “listening” for calls to come in. In other words, the

Client needs to know:
= the IP Address
» the port number

of the Server

Socket— TCP IP

© Staubli 2019 - TSS.000.009.04-A

7129

Information

@ The Server only has to listen for connections and either accept them or reject them when they
are initiated by a client

Information

@ Once a connection through a TCP/IP port has been established between a TCP/IP client and
a TCP/IP server, data can be sent in either direction

The connection between a Client and a Server remains open until either the client or the server terminates the
connection (i.e. hangs up the phone).

One extremely nice benefit of the TCP/IP protocol is that the low level drivers that implement the sending and
receiving of data perform error checking on all data so you are guaranteed that there will be no errors in any
data that you send or receive.

3 Communication schema

This is the schema for the communication between the server and the client

SERVER CLIENT

1: WAIT FOR ACLIENT

2:Send a message

3:Return a message

8/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

4 - What’s the Difference Between TCP and UDP? g
' W TAUBL]

4 What’s the Difference Between TCP and UDP?

TCPI/IP is a suite of protocols used by devices to communicate over the Internet and most local networks.
It is named after two of its original protocols—
1. the Transmission Control Protocol (TCP)

2. and the Internet Protocol (IP).

TCP IP

@ TCP provides apps a way to deliver (and receive) an ordered and error-checked stream of
information packets over the network.

UbpP

@ The User Datagram Protocol (UDP) is used by apps to deliver a faster stream of information
by doing away with error-checking..

When configuring some network hardware or software, you may need to know the difference.

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 9/29

https://www.howtogeek.com/190014/htg-explains-what-is-the-difference-between-tcp-and-udp/

4.1 What they Have In Common

Both TCP and UDP are protocols used for sending bits of data—known as packets—over the Internet.
Both protocols build on top of the IP protocol.
In other words, whether you’re sending a packet via TCP or UDP, that packet is sent to an IP address.

These packets are treated similarly, as they're forwarded from your computer to intermediary routers and on to
the destination.

4.2 How TCP Works

TCP is the most commonly used protocol on the Internet.

When you request a web page in your browser, your computer sends TCP packets to the web server’s address,
asking it to send the web page back to you. The web server responds by sending a stream of TCP packets,
which your web browser stitches together to form the web page. When you click a link, sign in, post a comment,
or do anything else, your web browser sends TCP packets to the server and the server sends TCP packets
back.

TCP is all about reliability—packets sent with TCP are tracked so no data is lost or corrupted in transit. This is
why file downloads don’t become corrupted even if there are network hiccups. Of course, if the recipient is
completely offline, your computer will give up and you’ll see an error message saying it can’t communicate with
the remote host.

TCP achieves this in two ways. First, it orders packets by numbering them. Second, it error-checks by having
the recipient send a response back to the sender saying that it has received the message. If the sender doesn’t
get a correct response, it can resend the packets to ensure the recipient receives them correctly.

TCP guarantees the recipient will receive the packets in order by numbering them. The recipient sends
messages back to the sender saying it received the messages. If the sender does not get a correct response, it
will resend the packets to ensure the recipient received them. Packets are also checked for errors..

4.3 How UDP Works

The UDP protocol works similarly to TCP, but it throws out all the error-checking stuff. All the back-and-forth
communication introduces latency, slowing things down.

When an app uses UDP, packets are just sent to the recipient. The sender doesn’t wait to make sure the
recipient received the packet—it just continues sending the next packets. If the recipient misses a few UDP
packets here and there, they are just lost—the sender won’t resend them. Losing all this overhead means the
devices can communicate more quickly.

UDP is used when speed is desirable and error correction isn’'t necessary. For example, UDP is frequently used
for live broadcasts and online games.

For example, let’s say you're watching a live video stream, which are often broadcast using UDP instead of
TCP. The server just sends a constant stream of UDP packets to computers watching. If you lose your
connection for a few seconds, the video may freeze or get jumpy for a moment and then skip to the current bit of
the broadcast. If you experience minor packet-loss, the video or audio may be distorted for a moment as the
video continues to play without the missing data.

This works similarly in online games. If you miss some UDP packets, player characters may appear to teleport
across the map as you receive the newer UDP packets. There’s no point in requesting the old packets if you

10/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

4 - What’s the Difference Between TCP and UDP? oy
' w SrausLr

missed them, as the game is continuing without you. All that matters is what’s happening right now on the game
server—not what happened a few seconds ago. Ditching TCP’s error correction helps speed up the game
connection and reduces latency.

When using UDP, packets are just sent to the recipient. The sender will not wait to make sure the recipient
received the packet — it will just continue sending the next packets. If you are the recipient and you miss some
UDP packets, too bad — you cannot ask for those packets again. There is no guarantee you are getting all the
packets and there is no way to ask for a packet again if you miss it, but losing all this overhead means the
computers can communicate more quickly.

4.4 \What is the difference between TCP and UDP?

Both TCP and UDP are protocols used for sending bits of data — known as packets — over the Internet. They
both build on top of the Internet protocol. In other words, whether you are sending a packet via TCP or UDP,
that packet is sent to an IP address. These packets are treated similarly, as they are forwarded from your
computer to intermediary routers and on to the destination.

TCP and UDP are not the only protocols that work on top of IP. However, they are the most widely used. The
widely used term “TCP/IP” refers to TCP over IP. UDP over IP could just as well be referred to as “UDP/IP”,
although this is not a common term.

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 11/29

https://www.pluralsight.com/blog/it-ops/networking-basics-tcp-udp-tcpip-osi-models

5 TCP-IP socket using the val3

5.1 Create the Communication using SRS

Create a new empty cell with SRS

I}

New cell wizard

Save copy as... i
py as —— Creates a new cell with a controller

Open...
Close

Recent New empty cell

Creates an empty cell without adding any controllers.
SRS

New
L3
Help

Settings...

Exit

Define the name of the cell as server_client

MName

SRS

server_client

Path

Add a new robot for example TX2_60

12/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

5 - TCP-IP socket using the val3

TAUBL/

v
] E - | 4
J Windows
View » -
Cell Explorer ~ 3 X
=
New robot E+ Add | JE—
Existing local robot () show 3D view
Existing remote robot &% Cell /O Linker Ctrl+W, I
P/ Save copy as...
Explore
ﬁ Properties F4
N Close
the version val3 selected is the 8.8.2
!
w
Controller options for arm tx2_60-FLOOR
E General
Vel
Name Controllerl
9 Version [58.8.2{597851593 v
iio
Valves
7.1
- Monostable Bistable Closed at mid position
2 None ‘))
ol T T eI e
The arm will have 0 valve(s).
Options
Select a pack: [VALB '}
— Version Demo mode Status
i A VAL3 Demo
a0 /"_E' AaxesAbsoluteRobot [l None
J%' GaxesAbsoluteRobot D None
/7 advCtriFunctions (4] None
A alter] None
Create 2 new application :
Socket— TCP IP © Staubli 2019 - TSS.000.009.04-A

13/29

5.2 server —client controller

into each controller create one socket

')
Home VAL3 Modelling Simulation CS9 Maintenance Safety General l General

@

L aarrY

14/29

Import Refresh |Properties| Cell /O Show IO Print Print Edit Add IO | Filters
. Linker Map Editor Preview = board board -
Print Edit Insert
= Physical I0s-Controllerl 4= X client-start* server-start* Controllerl[s8.8.2-C... B51593]:b2 60
Physical I0s Description Physical link F
CpulD CPU
Dsil0 Arm
DsiloSafe DsiloSafe
FastIo J212
PowerSupplyIO 1222
Rsi9I0 Jiox
Serial 1203
, T e N |
server Socket\server
Starcl0 Serial J203
» B Socke:
Star Import ..

I Add 10 board

Add module ..

Show Analogue Cards
show Digital Cards
Show Serials

Show Inputs

Show Outputs

Copy physical link

rasuy Frava D .
PowerSupplyIO J222 5 P Edit board
RsiOI0 10X :
Serial J203

servel Import ..

Starcl0 | | Add 10 board

Add module ..
Add »
er-start
Delete Del == Controllerl Search:
Filters Physical I0s Description Format Logical Name
» «* Serial J203
Show Anzlogue Cards 4 &* Sockets
show Digital Cards | - @ei
-&. server server : sio_server{0]

Show Serials
Show Inputs

Show Outputs

Copy physical link
[Edit board

.

by

© Staubli 2019 - TSS.000.009.04-A

Socket— TCP IP

5 - TCP-IP socket using the val3 TA.UBLI

in the server controller create a server TCP IP

Edit Insert
server-start* Controller1[s8.8.2-C... B51593]:b2_60 Emulator updates
Physical link Format
(Socket Edition
Socket\server Name server
Port 1000
Description
Timeout (ms) 0
End of string 10
Nagle |:|
- R

in the client controller create a client TCP IP

+nyanean i L ua

{ Socket Edition
Socket\server Name
Port
Description
Timeout (ms)
End of string
Nagle I
s
- X
Tcp client
Tcp server
Udp

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 15/29

Server declaration

PN cun msert

ysical I0s-Controllerl

o server-sio_server Data &= X server-start Emulator updates

== Controllerl

C

Print Edit Insert
_ server Data server-start Emulator updates
ption Physical link Eormat
Socket Edition

Physical I0s Description Format .
- Physral link Enrrmat I L b =
» 4* Serial Socket Edition
4 g% Sockets
Sockehaeryer, Name server
-4 SErVer
k Part 1000 H
Description
Timeout ms) [d :
End of string 10 H
Nagle [
<)
* X

Client declaration

hoymcal et Format Logeal Neme
e = =
‘Socket Edtion |
Socket\server Name chent
Sodtf\(eﬁl r
Port 1001 s
Descrpvon
Timeout (ms) 0 s
End of string 10 [
Server P 127001
Nagie

«3

ost:850/emulator.html
Run the applications

i -
VAL3 APPLICATIONS
Storages
Running app
No Application Running Add
Paste
o No Filter
Check 'server’

0O server

@ 100 % EE

o &

Reload Application

Upload Application

Print

B o B

Print Preview

Save Application As

P Run Application

{‘; Run and debug Application
Explore

F@ Find Code Issues

}' Properties

2 Close Application

4 .. server_client

4 = Controllerl [s8.8.2-Cs9_B51593]

t2_60
> Eg client
er
»
ferences
Ctri+V start ()
Shift+F6 stop 0

Select As Source To Compare Ctrl+T, §

Ctri+p

Ctri#R X

Ctri+RD

F4

interface

ller2 [s8.8.2-Cs9_BS1593]
40

nt

ferences

start

stop

interface

ver

16/29 © Staubli 2019 - TSS.000.009.04-A

Socket— TCP IP

5 - TCP-IP socket using the val3

5.3 Initialize the communication

1. the server has to be on “listen”, sioGet or string= sioData

TAUBLI

2. the client send Data to the server in order to established a connection, sioSet() or sioData=string

3. the server wait the client has been connected using the timeout;

o -1: the server will give back a result without waiting :

e - 1:no message arrived

e n char received

e 0: the server will wait until a message has been received

e n: the server will wait until n-millisecond and give back a result

Socket— TCP IP

¢ -1:no message arrived

e n char received

4 Server }—\

O
v

Bind
O

Listen

Accept G

\

O
L

Connect
ﬁ u

(Send /]
Receive <

.
&3
N

=
0
&3
—

© Staubli 2019 - TSS.000.009.04-A

17/29

5.4 Send Receive

When the communication has been established the server and the client can send and receive some messages
or characters, until one of the two socket will be close

Server

Bind

Listen

create a new server socket
>> create a socket 1/ O
>> start the application

init the communication
>> clearBuffer()

wait for a new data through the TCP - IP
>> sioGet()

Client

O

T

Accept

e

L &

waiting until conncetion or timeOut
>> wait return value of the sioGet() function

‘. Send/ |
Receive

read / write through the TCP - IP
>> sioGet() - sioSet

Send /
Receive

"“

-

&3

5.5 Disconnection

If the sender will close the communication

e the sioGet will retrun -1 even if the timeOut is set to 0

e the string = sioData will stop the current task

If the receiver will close the communications t

o
&3

e the sioSet() will return -1 even if the timeOut has been setto 0
e the sioData = string will stop the current task

18/29

© Staubli 2019 - TSS.000.009.04-A

Connect

create a new client socket
>> create a socket 1/ O
>> start the application

[1

send data to Server
>> sioSet()

read / write through the TCP - IP
>> sioGet() - sioSet

Socket— TCP IP

5 - TCP-IP socket using the val3

5.6 SioGet - SioSet

Basic programs on val3 how to start the communication on the client — server

e server

begin

// clear the buffer

clearBuffer(sio_server)

? "Server is ready.."

// wait the client has sent one message

sReceiveMsg=""

do
1_nResult=sioGet(sio_server.l_nReceiveByte)
sReceiveMsg=sReceiveMsg+chr(1l_nReceiveByte)

until 1_nResult!=1l or 1l_nReceiveByte==13

? "receive: "+sReceivelsg

// write

? sSendMsg="Hello I'm the Staubli server "

for i=0 to len(sSendMsg)-1
1_nResult=sioSet(sio_server.asc(sSendMsg-i))
if 1_nResult!=1l

i=len(sSendMsg)
1_bError=true

endIf

endFor

// connection will close

? "end"”

wait(false)

end

e client

begin
// clear the buffer
? "Client is ready.."
// uwrite
? sSendMsg="Hello I'm the Staubli client "
for i=0 to len(sSendMsg)-1
1_nResult=sioSet(sio_client.asc(sSendMsg-i))
if 1_nResult!=1l
i=len(sSendMsg)
1_bError=true
endIf
endFor
// send the last char
1_nE0S=13
1_nResult=sioSet(sio_client-1_nEOS)
if 1_nResult!=1l
1_bError=true
endIf
// wait the server has sent one message
sReceiveMsg=""
do
1_nResult=sioGet(sio_client-.l_nReceiveByte)
sReceiveMsg=sReceiveMsg+chr(1l_nReceiveByte)
until 1_nResult!=1l or 1l_nReceiveByte==13
? "receive: "+sReceiveMsg
// connection will close
? "end"”
wait(false)
end

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 19/29

5.7 example using directly a sioData

server

begin

// clear the buffer
clearBuffer(sio_server)

? "Server is ready.."

// wait the client has sent one message
sReceiveMsg=sio_server

? "receive: "+sReceiveMsg

// uwrite

sSendMsg="Msg sent >> Hello I'm the server "
sio_server=sSendMsg

// connection will close

? "end"”

wait(false)

end
e client
begin
? "Client is ready.."
// uwrite
sSendMsg="Msg sent >> Hello I'm the client "
sio_client=sSendMsg
// wait the server has sent one message
sReceiveMsg=sio_client
? "receive: "+sReceivelMsg
// connection will close
? "end"”
wait(false)
end

5.8 Message from the console

client:

Application 'client' started.
"Client is ready.."

"Hello I'm the staubli client "
"receive: Welcome to my server”

"end"”

server:

20/29

Application 'server!' started.
"Server is ready.."

"receive: Is anybody there"
"Hello I'm the staubli server "

"end"”

© Staubli 2019 - TSS.000.009.04-A

Socket— TCP IP

5 - TCP-IP socket using the val3

5.9 Test using an external client — server

server val3 ; client cSharp

1) run the server application inside the Controllerl of the server-client cell
2) check if the server application is inside the running application on the VAL3 APPLICATIONS menu

1 -l
VAL3 APPLICATIONS
Running app
! No Application Running
o
0O server

@& 1000 %

Storages

A . server_client
4 B8 Controllerl [s8.8.2-Cs9_B51593]
tx2_60

b ¥ client

er
had ' ferences
— Paste Ctri+v start 0
F_\J Check 'server’ Shift+F& stop 0
& Reload Application interface
Select As Source To Compare Ctrl+T, S ller2 [s8.8.2-Cs9_BS1593]
Fg? Upload Application | 40
& Print Ctri=p nt
&5 Print Preview ferences
Save Application As start
P Run Application Ctri+RX stop
L3 Runand debug Application © Ctri+RD interface
Explore er
R Find Code Issues
}' Properties F4
X Close Application

3) execute the TCPCLIENT windows application
4) Insert the IP and the PORT of the server
5) CONNECT the client

Connection

P 127001

PORT 1000

CONNECT
MESSAGE

DISCONNECT

w:.-:wrmE-:.k
MESSAGE

DISCONNECT

Socket— TCP IP

e i IP 127001
Hostreturn: Hello I'm the Staubli server
PORT 1000

CONNECT

I'.IE.‘:bh'T:g

DISCONNECT

© Staubli 2019 - TSS.000.009.04-A

TAUBL/

i - =
VAL3 APPLICATIONS
! Running app °
server
o File
0 server [Running |
& 1000 % B .

Status

Connection

connecting to: 127.0.0.1 on port 1000
Client send: Is anybody there
Hostreturn: Hello I'm the Staubli server
Client send: Is anybody there

The hostreturned to you anything Il
Connection closed..

21/29

client val3 ; server cSharp

1) execute the TCPSERVER windows application
2) Define the PORT of the server
3) CONNECT the server

) TCP SERVER 7 TCP SERVER =

Connection Status Connection Status

IP |fed0:bd3a:96fe:9 IP fed0:bd3a:96fe:9| |Waiting for client..
PORT 1000] PORT 1000

Client Client

CONMNECT COMNMNECT
DISCONNECT DISCONNECT
—

4) run the client application inside the Controllerl of the server-client cell
5) check if the server application is inside the running application on the VAL3 APPLICATIONS menu

i - =
A . _server_client
VAL3 APPLICATIONS
i - - 4 == Controllerl [s8.8.2-Cs9 BS1503]
Storages
) | Memoy |
VAL3 APPLICATIONS = Running app o
» Vo client server
Storages -
= erver (] No Filte
Running app O
‘ No Application Running Add 4 ferences
. O server [Runrun |
o — Paste Ctri+v start
Mo Check 'server shift+Fe stop ()
O e © Reload application interface
Select As Source To Compare Ctrl+T, S ller2 [s8.8.2-Cs9_BS1503]
I Fﬁ Upload Application 140
& Pprint crl+p nt
ega. Print Preview ferences
Save Application As start
I Run Application cti+RX stop 0
£X Runand debug Application © Ctrl+RD interface
Explore er
IEJ, Find Code Issues
;’ Properties Fa @& 1000 % | 2 » .
2 Close Application
A g, server_client
- 4 B8 Controller] [sB.82-Cs9_B51553]
x2_60
N client
References
o b M start
» Mstop ()
uinmrfar.e
— 4 ¥ server

References
b [start
¥ Mstop
) intertace
4 = Controller? [sE5.2
a2 40

Connecticn Stams
P fedlbodla G| |Wating for chent.
Connected lo. 127.001 4523
POAT 1000 chent send Hella T'm e Staubli clien
Hasl reluen Wislcame i my serdsr

Charil
127.0:0.1:54523

SrauvsLr S

22/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

5 - TCP-IP socket using the val3
5.10 Test sending array of bits and floats

server

begin
// clear the buffer
clearBuffer(sio_server)
? "Server is ready.."
? "receive: "7
// wait the server has sent one message
1_nResult=sioGet(sio_server.l_nReceiveByte)

if 1_nResult==size(l_nReceiveByte) and 1l_nReceiveBytel71==13

// L byte >> 8 bit
// 2 bytes >> 1 word
// 4 bytes >> 1 float
if fromBinary(l_nReceiveByte- 1-"1".1_nByte)!=1
1_bError=true
endIf
call word2bits(l_nByte.bBits)
? bBits[OJ1
? bBits[1lI
? bBitslC21
? bBits[31
? bBits[4l
? bBits[51
? bBits[kl
? bBits[?71
? 1_nByte
if fromBinary(l_nReceiveByte[1ll-.2-"21"-nWord)!=2
1_bError=true
endIf
? nWord
if fromBinary(l_nReceiveByte[31-4-."4.01"-nFloat)'!=4
1_bError=true
endIf
? nFloat
endIf
// send it
? "write”
// array of bits
? bBits[OJ=true
bBits[ClI=true
bBitsC2I1=true
bBitsC3l=false
bBitsC4I=false
bBits[C5l1=false
bBits[kl=false
? bBits[7I=false
call bits2word(bBits-nSendMessage)
? nSendMessage
// word double bytes
? 1_nWord=333
toBinary(l_nWord-2-"21"-nSendMessagel1l1)
// float 4 bytes
? 1_nFloat=987.L54321
toBinary(l_nFloat-4."4.01"-nSendMessagel31)
// EOS - send the last char
1_nE0S=13
nSendMessagel?1=1_nEOQS
1_nResult=sioSet(sio_server.nSendMessage)
if 1_nResult!=size(nSendMessage)-1
1_bError=true
endIf
// connection will close
? "end"
wait(false)
end

N N N N N

N

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A

TAUBL/

23/29

client

begin
// clear the buffer
? "Client is ready.."
// write
? "write"”
// array of bits
? bBitsCOI=true
bBitsClI=true
bBits[2I=true
bBits[3I=true
bBitsC4I=false
bBitsC5I=false
bBitsCkI=false
? bBits[?I1=false
call bits2word(bBits-nSendMessage)
? nSendMessage
// word double bytes
? 1_nWord=222
toBinary(l_nWord-.2-"21"-nSendMessagel1l1)
// float 4 bytes
? 1_nFloat=123.45k7
toBinary(l_nFloat-4-."4.01"-nSendMessagel31)
// EOS - send the last char
1_nE0S=13
nSendMessagel?1=1_nEOQS
1_nResult=sioSet(sio_client-nSendMessage)
if 1_nResult!=size(nSendMessage)-1
1_bError=true
endIf
// wait the server has sent one message
? "receive: "
1_nResult=sioGet(sio_client.l_nReceiveByte)
if 1_nResult==size(l_nReceiveByte) and 1l_nReceiveBytel[?7J==13
// L byte >> 8 bit
// 2 bytes >> 1 word
// 4 bytes >> 1 float
if fromBinary(l_nReceiveByte.l-"1".1_nByte)!=1
1_bError=true
endIf
call word2bits(l_nByte.bBits)
? bBits[OI1
bBits[1l1
bBitsL[21
bBitsL[31
bBitsL[41
bBitsL[51
bBitsL[kl
bBitsL[?71
1_nByte
if fromBinary(l_nReceiveByteL[lJl-2-"21"-nWord)!'=2
1_bError=true

PN S S SR P

[

if fromBinary(l_nReceiveByte[31-4-."4.01"-nFloat)!=4
1_bError=true
endIf
? nFloat
endIf
// connection will close
? "end"
wait(false)
end

24/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

5 - TCP-IP socket using the val3

5.11 Message from the console

server

Application 'server!' started-.
"Server is ready.."
"receive: "
true

true

true

true

false
false
false
false

15

22
123-45k703
"write"”
true

true

true

false
false
false
false
false

-

333
987.b54321

"end"™

Srausur

client

Application 'client' started-.
"Client is ready.."
"write"
true

true

true

true

false

false

false

false

15

==t
123-45kL7
"receive: "
true

true

true

false

false

false

false

false

?

333
987.L54297

"end"”

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 25/29

5.12 Run the Controller 3 — 4 together to simulate client — server

In order to execute both:

o client
o server
on val3
you can run

the server on the Controller 3

the client on the Controller 4

e The server application need to start and be in listen mode
e The client start
e The client send one message using some bytes
e The server is listen and convert the bytes|] into bits / word /float
e The server is sending back
e some hytes
e one string for the camera trsf
e The client is reading the:
e bytes and convert into bits / word /float
e string and convert into a trsf

ontrollerd[s8.8.2-Cs9_BS1593]:tx2 40 ~ X Controller3[s8.8.2-Cs9_BS15931x2 40

© nhttpsi/flocalhost:5665/emulator.html @ https:/flocalhost:5662/emulator.ntml

send msg receive msg

receive msg send msg

send msg bits:1111000000000000 . .
word: 222 receivemsg bits:1111000000000000
float: 123.457 ‘;;wrd;ggzqfﬁ

loat

byte [] 152220213 233 246 66 13
byte] 152220213 23324666 13

receive msg bits:1110000000000000 send msg bits:1110000000000000

word: 333 -
float 987.654 Poar: 967654

byte [] 77712242331186813

byte [] 77712242331186813

cameramsg {50,100,500} cameramsg {50,100,500}

& 1000 %

SrausLr SrausLr

26/29 © Staubli 2019 - TSS.000.009.04-A

Socket— TCP IP

0 - The dot net tcp client — server T/HUBLI

The dot net tcp client — server

5.13 Execute the TcpClient.exe

Launch from your pc the TcpClient executable file

%

TcpClient. exe

5.14 Configure the TcpClient application

In order to Connect to the CS9 server follow the following steps:

1) insert the IP of the CS9 and the port that we have previously define
2) press the connect button

3) looking in the CS9 we will have also a response

4) to send other message use the Message button

to close the communication use the disconnect button

£, TCPCLIENT B £, TCPCLIENT EE&

Connection Status Connection Status

connecting to: 10.10.91.195 on port: 1000
e IP [10.10.91.195 | | Cient send: Is anybody there

Host retum: Hello
PORT [| PORT [1000

CONNECT
MESSAGE
DISCONNECT

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A

27129

5.15 Execute the TcpServer.exe

Launch from your pc the TcpServer executable file

%

asynclcpServer.exe

5.16 Configure the Tcp Server application

To Start the communication to the CS9 client follow the following steps:
1. insert the port of the CS9 that we have previously define
2. press the connect button

to close the communication use the disconnect button

£, TCP SERVER EJEJE] | %: TCP SERVER EE&

Connection Status Connection Status
P IP Waiting for cliert...
Connected to: 10.10.91.195%:1035

PORT PORT -‘I 000 client send: |s anybody there

I:I Host retum: Welcome to my server
Client Client

CONMECT
DISCOMNECT

28/29 © Staubli 2019 - TSS.000.009.04-A Socket — TCP IP

0-

5.17 Error note:

CS9 as Server

If the test_server library has not been launched from the CS9, and we try to connect the client, we have a
connection refuse error.

If we connect the server and the client and we stop the server on CS9, if we try to send a message the first
time we will have a null response and the second time an error of writing reading to the transport
connection, because we have lost the communication. To solve the null response it's necessary to not
avoid a null message or before to quit send a message to the client and to close by himself.

If we connect the server and the client and we stop the client on the pc, the val3 will give us an error of
writing reading with the code 125, and for this reason in the test_server library there is a parallel task that is
supervising the application and resume the task. The test_server application will wait again for a client.

Connection close

If the server library has not been launched from the computer, and we try to connect the client, the val3
system will wait until the connection is done.

If we connect the server and the client and we stop the server on the pc, if we try to send a message an
error of writing reading with the code 125, because we have lost the communication. The val3 has to restart
from the beginning, so there is a supervisor task that will kill and restart the communication task.

If we connect the server and the client and we stop the client on the CS9, the server application will also
close, because it has no response from the client

Socket — TCP IP © Staubli 2019 - TSS.000.009.04-A 29/29

	1 Preliminary
	2 What is a socket connection
	2.1 What is TCP/IP and where did it come from?
	2.2 TCP/IP Client and Server Connections

	3 Communication schema
	4 What’s the Difference Between TCP and UDP?
	4.1 What they Have In Common
	4.2 How TCP Works
	4.3 How UDP Works
	4.4 What is the difference between TCP and UDP?

	5 TCP-IP socket using the val3
	5.1 Create the Communication using SRS
	5.2 server – client controller
	5.3 Initialize the communication
	5.4 Send Receive
	5.5 Disconnection
	5.6 SioGet - SioSet
	5.7 example using directly a sioData
	5.8 Message from the console
	5.9 Test using an external client – server
	5.10 Test sending array of bits and floats
	5.11 Message from the console
	5.12 Run the Controller 3 – 4 together to simulate client – server

	The dot net tcp client – server
	5.13 Execute the TcpClient.exe
	5.14 Configure the TcpClient application
	5.15 Execute the TcpServer.exe
	5.16 Configure the Tcp Server application
	5.17 Error note:

