

TSS.0000.009.04-A - 20/06/2019
© Stäubli 2019

socket TCP-IP

Technical documentation

2/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

A "readme.pdf" document may be delivered on the robot's DVD. It contains the documentation addenda

and errata.

Stäubli is a trademark of Stäubli International AG, registered in Switzerland and other countries. We reserve the

right to modify product specifications without prior notice.

1 - Preliminary

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 3/29

Table of Contents

1 Preliminary ... 5

2 What is a socket connection .. 6

2.1 What is TCP/IP and where did it come from? .. 6

2.2 TCP/IP Client and Server Connections ... 7

3 Communication schema .. 8

4 What’s the Difference Between TCP and UDP? ... 9

4.1 What they Have In Common .. 10

4.2 How TCP Works .. 10

4.3 How UDP Works .. 10

4.4 What is the difference between TCP and UDP? ... 11

5 TCP-IP socket using the val3 .. 12

5.1 Create the Communication using SRS .. 12

5.2 server – client controller ... 14

5.3 Initialize the communication ... 17

5.4 Send Receive .. 18

5.5 Disconnection .. 18

5.6 SioGet - SioSet ... 19

5.7 example using directly a sioData ... 20

5.8 Message from the console ... 20

5.9 Test using an external client – server .. 21

5.10 Test sending array of bits and floats .. 23

5.11 Message from the console ... 25

6 The dot net tcp client – server ... 26

6.1 Execute the TcpClient.exe ... 27

6.2 Configure the TcpClient application ... 27

6.3 Execute the TcpServer.exe ... 28

6.4 Configure the Tcp Server application .. 28

6.5 Error note: .. 29

4/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

History

Revision Modification
Date

(yyyy-mm-dd)
By

A Initial release 2019 06 20 A.RUSSO

B

C

Version

That document has been tested with :

 SRS 2019 4.1

 SRC : s8.8.2

 Safety : 1.000

 SYCON.net : 1.500 Build 180125

Keyword

socket, tcp-ip, ethernet comunication, …

1 - Preliminary

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 5/29

1 Preliminary

DANGER

Instructions drawing the reader's attention to the risks of accidents that could lead to serious

bodily harm if the steps shown are not complied with. In general, this type of indication

describes the potential danger, its possible effects and the necessary steps to reduce the

danger.

It is essential to comply with the instructions to ensure personal safety..

SAFETY

Instructions drawing the reader's attention that its responsibility is engaged if the steps shown

are not complied with.

It is essential to comply with the instructions to maintain the robot safety level.

Caution

Instructions directing the reader's attention to the risks of material damage or failure if the

steps shown are not complied with. It is essential to comply with these instructions to ensure

equipment reliability and performance levels.

ELECTRICAL risk

Instructions drawing the reader's attention to the risks of electrical shock.

It is essential to comply with the instructions to ensure personal safety..

Information

Supplies further information, or underlines a point or an important procedure. This information

must be memorized to make it easier to apply and ensure correct sequencing of the

operations described.

6/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

2 What is a socket connection

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite

TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications

running on hosts communicating via an IP network.

Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on

TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP),

which provides a connectionless datagram service that emphasizes reduced latency over reliability.

 What is TCP/IP and where did it come from? 2.1

TCP/IP stands for “Transmission Control Protocol / Internet Protocol”. It is basically a network protocol that

defines the details of how data is sent and received through network adapters, hubs, switches, routers and other

network communications hardware.

The TCP/IP protocol was also placed in the public domain so that any software company could develop

networking software based on the protocol. Because it is the primary protocol used on the Internet, and it is in

the public domain, it has become the most popular networking protocol throughout the world and is therefore

well supported by almost all computer systems and networking hardware.

2 - What is a socket connection

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 7/29

 TCP/IP Client and Server Connections 2.2

TCP/IP connections work in a manner similar to a telephone call where someone has to initiate the connection
by dialing the phone.

At the other end of the connection, someone has to be listening for calls and then pick up the line when a call
comes in. In TCP/IP communications, the IP Address is analogous to a telephone number and the port number
would be analogous to a particular extension once the call has been answered.

The “Client” in a TCP/IP connection is the computer or device that “dials the phone” and the “Server” is the
computer that is “listening” for calls to come in. In other words, the

Client needs to know:

 the IP Address

 the port number

of the Server

8/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

Information

The Server only has to listen for connections and either accept them or reject them when they

are initiated by a client

Information

Once a connection through a TCP/IP port has been established between a TCP/IP client and
a TCP/IP server, data can be sent in either direction

The connection between a Client and a Server remains open until either the client or the server terminates the
connection (i.e. hangs up the phone).

One extremely nice benefit of the TCP/IP protocol is that the low level drivers that implement the sending and
receiving of data perform error checking on all data so you are guaranteed that there will be no errors in any
data that you send or receive.

3 Communication schema

This is the schema for the communication between the server and the client

SERVER CLIENT

WAIT FOR A CLIENT1:

Return a message3:

Send a message2:

4 - What’s the Difference Between TCP and UDP?

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 9/29

4 What’s the Difference Between TCP and UDP?

TCP/IP is a suite of protocols used by devices to communicate over the Internet and most local networks.

It is named after two of its original protocols—

1. the Transmission Control Protocol (TCP)

2. and the Internet Protocol (IP).

TCP IP

TCP provides apps a way to deliver (and receive) an ordered and error-checked stream of

information packets over the network.

UDP

The User Datagram Protocol (UDP) is used by apps to deliver a faster stream of information

by doing away with error-checking..

When configuring some network hardware or software, you may need to know the difference.

https://www.howtogeek.com/190014/htg-explains-what-is-the-difference-between-tcp-and-udp/

10/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

 What they Have In Common 4.1

Both TCP and UDP are protocols used for sending bits of data—known as packets—over the Internet.

Both protocols build on top of the IP protocol.

In other words, whether you’re sending a packet via TCP or UDP, that packet is sent to an IP address.

These packets are treated similarly, as they’re forwarded from your computer to intermediary routers and on to

the destination.

 How TCP Works 4.2

TCP is the most commonly used protocol on the Internet.

When you request a web page in your browser, your computer sends TCP packets to the web server’s address,

asking it to send the web page back to you. The web server responds by sending a stream of TCP packets,

which your web browser stitches together to form the web page. When you click a link, sign in, post a comment,

or do anything else, your web browser sends TCP packets to the server and the server sends TCP packets

back.

TCP is all about reliability—packets sent with TCP are tracked so no data is lost or corrupted in transit. This is

why file downloads don’t become corrupted even if there are network hiccups. Of course, if the recipient is

completely offline, your computer will give up and you’ll see an error message saying it can’t communicate with

the remote host.

TCP achieves this in two ways. First, it orders packets by numbering them. Second, it error-checks by having

the recipient send a response back to the sender saying that it has received the message. If the sender doesn’t

get a correct response, it can resend the packets to ensure the recipient receives them correctly.

TCP guarantees the recipient will receive the packets in order by numbering them. The recipient sends

messages back to the sender saying it received the messages. If the sender does not get a correct response, it

will resend the packets to ensure the recipient received them. Packets are also checked for errors..

 How UDP Works 4.3

The UDP protocol works similarly to TCP, but it throws out all the error-checking stuff. All the back-and-forth

communication introduces latency, slowing things down.

When an app uses UDP, packets are just sent to the recipient. The sender doesn’t wait to make sure the

recipient received the packet—it just continues sending the next packets. If the recipient misses a few UDP

packets here and there, they are just lost—the sender won’t resend them. Losing all this overhead means the

devices can communicate more quickly.

UDP is used when speed is desirable and error correction isn’t necessary. For example, UDP is frequently used

for live broadcasts and online games.

For example, let’s say you’re watching a live video stream, which are often broadcast using UDP instead of

TCP. The server just sends a constant stream of UDP packets to computers watching. If you lose your

connection for a few seconds, the video may freeze or get jumpy for a moment and then skip to the current bit of

the broadcast. If you experience minor packet-loss, the video or audio may be distorted for a moment as the

video continues to play without the missing data.

This works similarly in online games. If you miss some UDP packets, player characters may appear to teleport

across the map as you receive the newer UDP packets. There’s no point in requesting the old packets if you

4 - What’s the Difference Between TCP and UDP?

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 11/29

missed them, as the game is continuing without you. All that matters is what’s happening right now on the game

server—not what happened a few seconds ago. Ditching TCP’s error correction helps speed up the game

connection and reduces latency.

When using UDP, packets are just sent to the recipient. The sender will not wait to make sure the recipient

received the packet — it will just continue sending the next packets. If you are the recipient and you miss some

UDP packets, too bad — you cannot ask for those packets again. There is no guarantee you are getting all the

packets and there is no way to ask for a packet again if you miss it, but losing all this overhead means the

computers can communicate more quickly.

 What is the difference between TCP and UDP? 4.4

Both TCP and UDP are protocols used for sending bits of data — known as packets — over the Internet. They

both build on top of the Internet protocol. In other words, whether you are sending a packet via TCP or UDP,

that packet is sent to an IP address. These packets are treated similarly, as they are forwarded from your

computer to intermediary routers and on to the destination.

TCP and UDP are not the only protocols that work on top of IP. However, they are the most widely used. The

widely used term “TCP/IP” refers to TCP over IP. UDP over IP could just as well be referred to as “UDP/IP”,

although this is not a common term.

https://www.pluralsight.com/blog/it-ops/networking-basics-tcp-udp-tcpip-osi-models

12/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

5 TCP-IP socket using the val3

 Create the Communication using SRS 5.1

Create a new empty cell with SRS

Define the name of the cell as server_client

Add a new robot for example TX2_60

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 13/29

the version val3 selected is the 8.8.2

Create 2 new application :

14/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

 server – client controller 5.2

into each controller create one socket

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 15/29

in the server controller create a server TCP IP

in the client controller create a client TCP IP

16/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

Server declaration

Client declaration

Run the applications

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 17/29

 Initialize the communication 5.3

1. the server has to be on “listen”, sioGet or string= sioData

2. the client send Data to the server in order to established a connection, sioSet() or sioData=string

3. the server wait the client has been connected using the timeout:

 -1: the server will give back a result without waiting :

 - 1 : no message arrived

 n char received

 0: the server will wait until a message has been received

 n: the server will wait until n-millisecond and give back a result

 -1 : no message arrived

 n char received

18/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

 Send Receive 5.4

When the communication has been established the server and the client can send and receive some messages

or characters, until one of the two socket will be close

 Disconnection 5.5

If the sender will close the communication

 the sioGet will retrun -1 even if the timeOut is set to 0

 the string = sioData will stop the current task

If the receiver will close the communications t

 the sioSet() will return -1 even if the timeOut has been set to 0

 the sioData = string will stop the current task

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 19/29

 SioGet - SioSet 5.6

Basic programs on val3 how to start the communication on the client – server

 server

begin

 // clear the buffer

 clearBuffer(sio_server)

 ? "Server is ready.."

 // wait the client has sent one message

 sReceiveMsg=""

 do

 l_nResult=sioGet(sio_server,l_nReceiveByte)

 sReceiveMsg=sReceiveMsg+chr(l_nReceiveByte)

 until l_nResult!=1 or l_nReceiveByte==13

 ? "receive: "+sReceiveMsg

 // write

 ? sSendMsg="Hello I'm the Staubli server "

 for i=0 to len(sSendMsg)-1

 l_nResult=sioSet(sio_server,asc(sSendMsg,i))

 if l_nResult!=1

 i=len(sSendMsg)

 l_bError=true

 endIf

 endFor

 // connection will close

 ? "end"

 wait(false)
end

 client

begin

 // clear the buffer

 ? "Client is ready.."

 // write

 ? sSendMsg="Hello I'm the Staubli client "

 for i=0 to len(sSendMsg)-1

 l_nResult=sioSet(sio_client,asc(sSendMsg,i))

 if l_nResult!=1

 i=len(sSendMsg)

 l_bError=true

 endIf

 endFor

 // send the last char

 l_nEOS=13

 l_nResult=sioSet(sio_client,l_nEOS)

 if l_nResult!=1

 l_bError=true

 endIf

 // wait the server has sent one message

 sReceiveMsg=""

 do

 l_nResult=sioGet(sio_client,l_nReceiveByte)

 sReceiveMsg=sReceiveMsg+chr(l_nReceiveByte)

 until l_nResult!=1 or l_nReceiveByte==13

 ? "receive: "+sReceiveMsg

 // connection will close

 ? "end"

 wait(false)
end

20/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

 example using directly a sioData 5.7

 server

begin

 // clear the buffer

 clearBuffer(sio_server)

 ? "Server is ready.."

 // wait the client has sent one message

 sReceiveMsg=sio_server

 ? "receive: "+sReceiveMsg

 // write

 sSendMsg="Msg sent >> Hello I'm the server "

 sio_server=sSendMsg

 // connection will close

 ? "end"

 wait(false)
end

 client

begin

 ? "Client is ready.."

 // write

 sSendMsg="Msg sent >> Hello I'm the client "

 sio_client=sSendMsg

 // wait the server has sent one message

 sReceiveMsg=sio_client

 ? "receive: "+sReceiveMsg

 // connection will close

 ? "end"

 wait(false)

end

 Message from the console 5.8

client:

Application 'client' started.

"Client is ready.."

" Hello I'm the staubli client "

"receive: Welcome to my server"

"end"

server:

Application 'server' started.

"Server is ready.."

"receive: Is anybody there"

"Hello I'm the staubli server "

"end"

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 21/29

 Test using an external client – server 5.9

server val3 ; client cSharp

1) run the server application inside the Controller1 of the server-client cell

2) check if the server application is inside the running application on the VAL3 APPLICATIONS menu

3) execute the TCPCLIENT windows application

4) Insert the IP and the PORT of the server

5) CONNECT the client

22/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

client val3 ; server cSharp

1) execute the TCPSERVER windows application

2) Define the PORT of the server

3) CONNECT the server

4) run the client application inside the Controller1 of the server-client cell

5) check if the server application is inside the running application on the VAL3 APPLICATIONS menu

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 23/29

 Test sending array of bits and floats 5.10

server

begin
 // clear the buffer

 clearBuffer(sio_server)
 ? "Server is ready.."

 ? "receive: "
 // wait the server has sent one message

 l_nResult=sioGet(sio_server,l_nReceiveByte)

 if l_nResult==size(l_nReceiveByte) and l_nReceiveByte[7]==13
 // 1 byte >> 8 bit

 // 2 bytes >> 1 word
 // 4 bytes >> 1 float

 if fromBinary(l_nReceiveByte,1,"1",l_nByte)!=1

 l_bError=true
 endIf

 call word2bits(l_nByte,bBits)
 ? bBits[0]

 ? bBits[1]

 ? bBits[2]
 ? bBits[3]

 ? bBits[4]
 ? bBits[5]

 ? bBits[6]

 ? bBits[7]
 ? l_nByte

 if fromBinary(l_nReceiveByte[1],2,"2l",nWord)!=2
 l_bError=true

 endIf

 ? nWord
 if fromBinary(l_nReceiveByte[3],4,"4.0l",nFloat)!=4

 l_bError=true
 endIf

 ? nFloat

 endIf
 // send it

 ? "write"
 // array of bits

 ? bBits[0]=true

 ? bBits[1]=true
 ? bBits[2]=true

 ? bBits[3]=false
 ? bBits[4]=false

 ? bBits[5]=false

 ? bBits[6]=false
 ? bBits[7]=false

 call bits2word(bBits,nSendMessage)
 ? nSendMessage

 // word double bytes

 ? l_nWord=333
 toBinary(l_nWord,2,"2l",nSendMessage[1])

 // float 4 bytes
 ? l_nFloat=987.654321

 toBinary(l_nFloat,4,"4.0l",nSendMessage[3])

 // EOS - send the last char
 l_nEOS=13

 nSendMessage[7]=l_nEOS
 l_nResult=sioSet(sio_server,nSendMessage)

 if l_nResult!=size(nSendMessage)-1

 l_bError=true
 endIf

 // connection will close
 ? "end"

 wait(false)

end

24/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

client

begin

 // clear the buffer
 ? "Client is ready.."

 // write
 ? "write"

 // array of bits

 ? bBits[0]=true
 ? bBits[1]=true

 ? bBits[2]=true
 ? bBits[3]=true

 ? bBits[4]=false

 ? bBits[5]=false
 ? bBits[6]=false

 ? bBits[7]=false
 call bits2word(bBits,nSendMessage)

 ? nSendMessage

 // word double bytes
 ? l_nWord=222

 toBinary(l_nWord,2,"2l",nSendMessage[1])
 // float 4 bytes

 ? l_nFloat=123.4567

 toBinary(l_nFloat,4,"4.0l",nSendMessage[3])
 // EOS - send the last char

 l_nEOS=13
 nSendMessage[7]=l_nEOS

 l_nResult=sioSet(sio_client,nSendMessage)

 if l_nResult!=size(nSendMessage)-1
 l_bError=true

 endIf
 // wait the server has sent one message

 ? "receive: "

 l_nResult=sioGet(sio_client,l_nReceiveByte)
 if l_nResult==size(l_nReceiveByte) and l_nReceiveByte[7]==13

 // 1 byte >> 8 bit
 // 2 bytes >> 1 word

 // 4 bytes >> 1 float

 if fromBinary(l_nReceiveByte,1,"1",l_nByte)!=1
 l_bError=true

 endIf
 call word2bits(l_nByte,bBits)

 ? bBits[0]

 ? bBits[1]
 ? bBits[2]

 ? bBits[3]
 ? bBits[4]

 ? bBits[5]

 ? bBits[6]
 ? bBits[7]

 ? l_nByte
 if fromBinary(l_nReceiveByte[1],2,"2l",nWord)!=2

 l_bError=true

 endIf
 ? nWord

 if fromBinary(l_nReceiveByte[3],4,"4.0l",nFloat)!=4
 l_bError=true

 endIf

 ? nFloat
 endIf

 // connection will close
 ? "end"

 wait(false)

end

5 - TCP-IP socket using the val3

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 25/29

 Message from the console 5.11

server

Application 'server' started.

"Server is ready.."

"receive: "

true

true

true

true

false

false

false

false

15

222

123.456703

"write"

true

true

true

false

false

false

false

false

7

333

987.654321

"end"

client

Application 'client' started.

"Client is ready.."

"write"

true

true

true

true

false

false

false

false

15

222

123.4567

"receive: "

true

true

true

false

false

false

false

false

7

333

987.654297

"end"

26/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

 Run the Controller 3 – 4 together to simulate client – server 5.12

In order to execute both:

o client

o server

on val3

you can run

the server on the Controller 3

the client on the Controller 4

 The server application need to start and be in listen mode

 The client start

 The client send one message using some bytes

 The server is listen and convert the bytes[] into bits / word /float

 The server is sending back

 some bytes

 one string for the camera trsf

 The client is reading the:

 bytes and convert into bits / word /float

 string and convert into a trsf

0 - The dot net tcp client – server

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 27/29

The dot net tcp client – server

 Execute the TcpClient.exe 5.13

Launch from your pc the TcpClient executable file

 Configure the TcpClient application 5.14

In order to Connect to the CS9 server follow the following steps:

1) insert the IP of the CS9 and the port that we have previously define

2) press the connect button

3) looking in the CS9 we will have also a response

4) to send other message use the Message button

to close the communication use the disconnect button

28/29 © Stäubli 2019 - TSS.000.009.04-A Socket – TCP IP

 Execute the TcpServer.exe 5.15

Launch from your pc the TcpServer executable file

 Configure the Tcp Server application 5.16

To Start the communication to the CS9 client follow the following steps:

1. insert the port of the CS9 that we have previously define

2. press the connect button

to close the communication use the disconnect button

0 -

 Socket – TCP IP © Stäubli 2019 - TSS.000.009.04-A 29/29

 Error note: 5.17

CS9 as Server

 If the test_server library has not been launched from the CS9, and we try to connect the client, we have a
connection refuse error.

 If we connect the server and the client and we stop the server on CS9, if we try to send a message the first
time we will have a null response and the second time an error of writing reading to the transport
connection, because we have lost the communication. To solve the null response it’s necessary to not
avoid a null message or before to quit send a message to the client and to close by himself.

 If we connect the server and the client and we stop the client on the pc, the val3 will give us an error of
writing reading with the code 125, and for this reason in the test_server library there is a parallel task that is
supervising the application and resume the task. The test_server application will wait again for a client.

Connection close

 If the server library has not been launched from the computer, and we try to connect the client, the val3
system will wait until the connection is done.

 If we connect the server and the client and we stop the server on the pc, if we try to send a message an
error of writing reading with the code 125, because we have lost the communication. The val3 has to restart
from the beginning, so there is a supervisor task that will kill and restart the communication task.

 If we connect the server and the client and we stop the client on the CS9, the server application will also
close, because it has no response from the client

	1 Preliminary
	2 What is a socket connection
	2.1 What is TCP/IP and where did it come from?
	2.2 TCP/IP Client and Server Connections

	3 Communication schema
	4 What’s the Difference Between TCP and UDP?
	4.1 What they Have In Common
	4.2 How TCP Works
	4.3 How UDP Works
	4.4 What is the difference between TCP and UDP?

	5 TCP-IP socket using the val3
	5.1 Create the Communication using SRS
	5.2 server – client controller
	5.3 Initialize the communication
	5.4 Send Receive
	5.5 Disconnection
	5.6 SioGet - SioSet
	5.7 example using directly a sioData
	5.8 Message from the console
	5.9 Test using an external client – server
	5.10 Test sending array of bits and floats
	5.11 Message from the console
	5.12 Run the Controller 3 – 4 together to simulate client – server

	The dot net tcp client – server
	5.13 Execute the TcpClient.exe
	5.14 Configure the TcpClient application
	5.15 Execute the TcpServer.exe
	5.16 Configure the Tcp Server application
	5.17 Error note:

